--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer model-index: - name: speecht5_finetuned_commonvoice_dv results: [] --- # speecht5_finetuned_commonvoice_dv This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 384 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:--------:|:----:|:---------------:| | 10.3761 | 3.2222 | 100 | 0.7551 | | 8.3203 | 6.4444 | 200 | 0.5722 | | 7.3507 | 9.6667 | 300 | 0.5280 | | 6.9851 | 12.8889 | 400 | 0.5115 | | 6.6688 | 16.1270 | 500 | 0.4952 | | 6.479 | 19.3492 | 600 | 0.4871 | | 6.4798 | 22.5714 | 700 | 0.4771 | | 6.2714 | 25.7937 | 800 | 0.4759 | | 6.2132 | 29.0317 | 900 | 0.4700 | | 6.1966 | 32.2540 | 1000 | 0.4652 | | 6.1389 | 35.4762 | 1100 | 0.4638 | | 6.0647 | 38.6984 | 1200 | 0.4603 | | 6.032 | 41.9206 | 1300 | 0.4602 | | 6.0107 | 45.1587 | 1400 | 0.4552 | | 5.9762 | 48.3810 | 1500 | 0.4522 | | 6.0347 | 51.6032 | 1600 | 0.4507 | | 5.9424 | 54.8254 | 1700 | 0.4508 | | 5.9278 | 58.0635 | 1800 | 0.4522 | | 5.9332 | 61.2857 | 1900 | 0.4473 | | 5.9201 | 64.5079 | 2000 | 0.4443 | | 5.8812 | 67.7302 | 2100 | 0.4439 | | 5.8007 | 70.9524 | 2200 | 0.4426 | | 5.8262 | 74.1905 | 2300 | 0.4409 | | 5.8343 | 77.4127 | 2400 | 0.4404 | | 5.8536 | 80.6349 | 2500 | 0.4408 | | 5.7672 | 83.8571 | 2600 | 0.4381 | | 5.757 | 87.0952 | 2700 | 0.4381 | | 5.7981 | 90.3175 | 2800 | 0.4366 | | 5.8329 | 93.5397 | 2900 | 0.4371 | | 5.7738 | 96.7619 | 3000 | 0.4365 | | 5.7674 | 99.9841 | 3100 | 0.4370 | | 5.7987 | 103.2222 | 3200 | 0.4356 | | 5.6883 | 106.4444 | 3300 | 0.4351 | | 5.7883 | 109.6667 | 3400 | 0.4374 | | 5.7269 | 112.8889 | 3500 | 0.4345 | | 5.723 | 116.1270 | 3600 | 0.4336 | | 5.7776 | 119.3492 | 3700 | 0.4354 | | 5.724 | 122.5714 | 3800 | 0.4342 | | 5.7235 | 125.7937 | 3900 | 0.4334 | | 5.7067 | 129.0317 | 4000 | 0.4334 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0