|
--- |
|
inference: false |
|
datasets: |
|
- medalpaca/medical_meadow_medqa |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- biology |
|
- medical |
|
- QA |
|
- healthcare |
|
license: mit |
|
--- |
|
# Galen |
|
Galen is fine-tuned from [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), using [medical quesion answering dataset](https://huggingface.co/datasets/medalpaca/medical_meadow_medqa) |
|
### Galen's view about future of medicine and AI: |
|
 |
|
# Get Started |
|
Install "accelerate" to use CUDA GPU |
|
```bash |
|
pip install accelerate |
|
``` |
|
```py |
|
from transformers import AutoTokenizer, pipeline |
|
``` |
|
```py |
|
tokenizer = AutoTokenizer.from_pretrained('ahmed-ai/galen') |
|
model_pipeline = pipeline(task="text-generation", model='ahmed-ai/galen', tokenizer=tokenizer, max_length=256, temperature=0.5, top_p=0.6) |
|
``` |
|
```py |
|
result = model_pipeline('What is squamous cell carcinoma') |
|
#print the generated text |
|
print(result[0]['generated_text'][len(prompt):]) |
|
``` |