File size: 1,006 Bytes
f804b4b 68460f5 f804b4b 6805bf1 f804b4b f28a0c4 792a6df 411b63c 792a6df a6452bd 792a6df 370ccd1 792a6df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
inference: false
datasets:
- medalpaca/medical_meadow_medqa
language:
- en
library_name: transformers
tags:
- biology
- medical
- QA
- healthcare
license: mit
---
# Galen
Galen is fine-tuned from [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2), using [medical quesion answering dataset](https://huggingface.co/datasets/medalpaca/medical_meadow_medqa)
### Galen's view about future of medicine and AI:

# Get Started
Install "accelerate" to use CUDA GPU
```bash
pip install accelerate
```
```py
from transformers import AutoTokenizer, pipeline
```
```py
tokenizer = AutoTokenizer.from_pretrained('ahmed-ai/galen')
model_pipeline = pipeline(task="text-generation", model='ahmed-ai/galen', tokenizer=tokenizer, max_length=256, temperature=0.5, top_p=0.6)
```
```py
result = model_pipeline('What is squamous cell carcinoma')
#print the generated text
print(result[0]['generated_text'][len(prompt):])
``` |