metadata
base_model: agentlans/multilingual-e5-small-aligned
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3000000
- loss:CoSENTLoss
widget:
- source_sentence: Jesus answered them.
sentences:
- ישוע ענה להם.
- आत्ताच नीघ.
- Мы надеялись, что дождь прекратится до обеда.
- source_sentence: Foreign books are sold at the shop.
sentences:
- Tak, det er alt.
- Корабль бросил якорь.
- Les livres étrangers sont vendus à la boutique.
- source_sentence: Cats usually hate dogs.
sentences:
- Куда вы ходили в прошлое воскресенье?
- >-
The bottles of beer that I brought to the party were redundant; the
host's family owned a brewery.
- Mir tut der Arm weh.
- source_sentence: How foolish I was not to discover that simple lie!
sentences:
- Tenho umas perguntas pra fazer, mas não quero te incomodar.
- Mi piacciono di più le mele.
- Quel idiot j'étais de n'avoir pas découvert ce simple mensonge !
- source_sentence: Esta es mi amiga Rachel, fuimos al instituto juntos.
sentences:
- Το σχολείο μας έχει εννιά τάξεις.
- >-
When applying to American universities, your TOEFL score is only one
factor.
- Je n'ai pas encore pris ma décision.
SentenceTransformer based on agentlans/multilingual-e5-small-aligned
This is a sentence-transformers model finetuned from agentlans/multilingual-e5-small-aligned. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: agentlans/multilingual-e5-small-aligned
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("agentlans/multilingual-e5-small-aligned-v2")
# Run inference
sentences = [
'Esta es mi amiga Rachel, fuimos al instituto juntos.',
"Je n'ai pas encore pris ma décision.",
'When applying to American universities, your TOEFL score is only one factor.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,000,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 11.16 tokens
- max: 55 tokens
- min: 5 tokens
- mean: 12.27 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence_0 sentence_1 label Bring your friends with you.
Traga seus amigos com você.
1.0
I've been there already.
Você tem algo mais barato?
0.0
All my homework is done.
माझा सगळा होमवर्क झाला आहे.
1.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0053 | 500 | 0.835 |
0.0107 | 1000 | 0.7012 |
0.016 | 1500 | 0.6765 |
0.0213 | 2000 | 0.4654 |
0.0267 | 2500 | 0.7546 |
0.032 | 3000 | 0.6098 |
0.0373 | 3500 | 0.644 |
0.0427 | 4000 | 0.5318 |
0.048 | 4500 | 0.5638 |
0.0533 | 5000 | 0.5556 |
0.0587 | 5500 | 0.5165 |
0.064 | 6000 | 0.4083 |
0.0693 | 6500 | 0.4683 |
0.0747 | 7000 | 0.5414 |
0.08 | 7500 | 0.4678 |
0.0853 | 8000 | 0.4225 |
0.0907 | 8500 | 0.4552 |
0.096 | 9000 | 0.4551 |
0.1013 | 9500 | 0.4347 |
0.1067 | 10000 | 0.292 |
0.112 | 10500 | 0.4677 |
0.1173 | 11000 | 0.3567 |
0.1227 | 11500 | 0.4663 |
0.128 | 12000 | 0.4333 |
0.1333 | 12500 | 0.375 |
0.1387 | 13000 | 0.4183 |
0.144 | 13500 | 0.5745 |
0.1493 | 14000 | 0.4569 |
0.1547 | 14500 | 0.426 |
0.16 | 15000 | 0.4903 |
0.1653 | 15500 | 0.4287 |
0.1707 | 16000 | 0.4375 |
0.176 | 16500 | 0.377 |
0.1813 | 17000 | 0.3848 |
0.1867 | 17500 | 0.3366 |
0.192 | 18000 | 0.3784 |
0.1973 | 18500 | 0.399 |
0.2027 | 19000 | 0.3798 |
0.208 | 19500 | 0.3275 |
0.2133 | 20000 | 0.3594 |
0.2187 | 20500 | 0.3555 |
0.224 | 21000 | 0.3565 |
0.2293 | 21500 | 0.4264 |
0.2347 | 22000 | 0.4138 |
0.24 | 22500 | 0.3149 |
0.2453 | 23000 | 0.3397 |
0.2507 | 23500 | 0.359 |
0.256 | 24000 | 0.3311 |
0.2613 | 24500 | 0.3632 |
0.2667 | 25000 | 0.366 |
0.272 | 25500 | 0.2899 |
0.2773 | 26000 | 0.2611 |
0.2827 | 26500 | 0.3497 |
0.288 | 27000 | 0.3534 |
0.2933 | 27500 | 0.273 |
0.2987 | 28000 | 0.3199 |
0.304 | 28500 | 0.2527 |
0.3093 | 29000 | 0.2755 |
0.3147 | 29500 | 0.3684 |
0.32 | 30000 | 0.347 |
0.3253 | 30500 | 0.2537 |
0.3307 | 31000 | 0.3665 |
0.336 | 31500 | 0.2512 |
0.3413 | 32000 | 0.2913 |
0.3467 | 32500 | 0.2619 |
0.352 | 33000 | 0.2573 |
0.3573 | 33500 | 0.3036 |
0.3627 | 34000 | 0.3388 |
0.368 | 34500 | 0.2384 |
0.3733 | 35000 | 0.31 |
0.3787 | 35500 | 0.3461 |
0.384 | 36000 | 0.378 |
0.3893 | 36500 | 0.2409 |
0.3947 | 37000 | 0.2969 |
0.4 | 37500 | 0.2881 |
0.4053 | 38000 | 0.3612 |
0.4107 | 38500 | 0.2662 |
0.416 | 39000 | 0.2796 |
0.4213 | 39500 | 0.3298 |
0.4267 | 40000 | 0.2828 |
0.432 | 40500 | 0.2367 |
0.4373 | 41000 | 0.2661 |
0.4427 | 41500 | 0.393 |
0.448 | 42000 | 0.2875 |
0.4533 | 42500 | 0.203 |
0.4587 | 43000 | 0.3211 |
0.464 | 43500 | 0.3404 |
0.4693 | 44000 | 0.315 |
0.4747 | 44500 | 0.3018 |
0.48 | 45000 | 0.2491 |
0.4853 | 45500 | 0.2584 |
0.4907 | 46000 | 0.2583 |
0.496 | 46500 | 0.3447 |
0.5013 | 47000 | 0.4332 |
0.5067 | 47500 | 0.297 |
0.512 | 48000 | 0.2697 |
0.5173 | 48500 | 0.2349 |
0.5227 | 49000 | 0.2176 |
0.528 | 49500 | 0.2775 |
0.5333 | 50000 | 0.2508 |
0.5387 | 50500 | 0.291 |
0.544 | 51000 | 0.2672 |
0.5493 | 51500 | 0.2638 |
0.5547 | 52000 | 0.2877 |
0.56 | 52500 | 0.2758 |
0.5653 | 53000 | 0.264 |
0.5707 | 53500 | 0.2372 |
0.576 | 54000 | 0.3384 |
0.5813 | 54500 | 0.2459 |
0.5867 | 55000 | 0.3047 |
0.592 | 55500 | 0.1926 |
0.5973 | 56000 | 0.2573 |
0.6027 | 56500 | 0.2816 |
0.608 | 57000 | 0.285 |
0.6133 | 57500 | 0.2397 |
0.6187 | 58000 | 0.1935 |
0.624 | 58500 | 0.3281 |
0.6293 | 59000 | 0.3306 |
0.6347 | 59500 | 0.2067 |
0.64 | 60000 | 0.2483 |
0.6453 | 60500 | 0.2719 |
0.6507 | 61000 | 0.2585 |
0.656 | 61500 | 0.2385 |
0.6613 | 62000 | 0.2229 |
0.6667 | 62500 | 0.2311 |
0.672 | 63000 | 0.2664 |
0.6773 | 63500 | 0.209 |
0.6827 | 64000 | 0.2643 |
0.688 | 64500 | 0.2108 |
0.6933 | 65000 | 0.3063 |
0.6987 | 65500 | 0.1802 |
0.704 | 66000 | 0.2285 |
0.7093 | 66500 | 0.2065 |
0.7147 | 67000 | 0.2467 |
0.72 | 67500 | 0.2178 |
0.7253 | 68000 | 0.2217 |
0.7307 | 68500 | 0.2549 |
0.736 | 69000 | 0.2026 |
0.7413 | 69500 | 0.2609 |
0.7467 | 70000 | 0.2393 |
0.752 | 70500 | 0.1958 |
0.7573 | 71000 | 0.2214 |
0.7627 | 71500 | 0.2079 |
0.768 | 72000 | 0.1574 |
0.7733 | 72500 | 0.2356 |
0.7787 | 73000 | 0.1864 |
0.784 | 73500 | 0.257 |
0.7893 | 74000 | 0.2149 |
0.7947 | 74500 | 0.2519 |
0.8 | 75000 | 0.2746 |
0.8053 | 75500 | 0.2145 |
0.8107 | 76000 | 0.2732 |
0.816 | 76500 | 0.2456 |
0.8213 | 77000 | 0.1841 |
0.8267 | 77500 | 0.1876 |
0.832 | 78000 | 0.2661 |
0.8373 | 78500 | 0.1293 |
0.8427 | 79000 | 0.2018 |
0.848 | 79500 | 0.1854 |
0.8533 | 80000 | 0.1644 |
0.8587 | 80500 | 0.1844 |
0.864 | 81000 | 0.1937 |
0.8693 | 81500 | 0.1486 |
0.8747 | 82000 | 0.244 |
0.88 | 82500 | 0.131 |
0.8853 | 83000 | 0.215 |
0.8907 | 83500 | 0.2398 |
0.896 | 84000 | 0.2014 |
0.9013 | 84500 | 0.1703 |
0.9067 | 85000 | 0.2009 |
0.912 | 85500 | 0.1712 |
0.9173 | 86000 | 0.2649 |
0.9227 | 86500 | 0.2149 |
0.928 | 87000 | 0.1912 |
0.9333 | 87500 | 0.1902 |
0.9387 | 88000 | 0.2609 |
0.944 | 88500 | 0.1846 |
0.9493 | 89000 | 0.1485 |
0.9547 | 89500 | 0.2076 |
0.96 | 90000 | 0.2449 |
0.9653 | 90500 | 0.2025 |
0.9707 | 91000 | 0.2635 |
0.976 | 91500 | 0.2596 |
0.9813 | 92000 | 0.2221 |
0.9867 | 92500 | 0.2168 |
0.992 | 93000 | 0.192 |
0.9973 | 93500 | 0.1966 |
1.0027 | 94000 | 0.2112 |
1.008 | 94500 | 0.1628 |
1.0133 | 95000 | 0.1059 |
1.0187 | 95500 | 0.1403 |
1.024 | 96000 | 0.1726 |
1.0293 | 96500 | 0.1973 |
1.0347 | 97000 | 0.1682 |
1.04 | 97500 | 0.1319 |
1.0453 | 98000 | 0.1427 |
1.0507 | 98500 | 0.1448 |
1.056 | 99000 | 0.1215 |
1.0613 | 99500 | 0.1064 |
1.0667 | 100000 | 0.0856 |
1.072 | 100500 | 0.1046 |
1.0773 | 101000 | 0.1127 |
1.0827 | 101500 | 0.0988 |
1.088 | 102000 | 0.1598 |
1.0933 | 102500 | 0.1592 |
1.0987 | 103000 | 0.1122 |
1.104 | 103500 | 0.0771 |
1.1093 | 104000 | 0.1355 |
1.1147 | 104500 | 0.1265 |
1.12 | 105000 | 0.1464 |
1.1253 | 105500 | 0.1578 |
1.1307 | 106000 | 0.1017 |
1.1360 | 106500 | 0.1047 |
1.1413 | 107000 | 0.1865 |
1.1467 | 107500 | 0.1721 |
1.152 | 108000 | 0.1096 |
1.1573 | 108500 | 0.181 |
1.1627 | 109000 | 0.1261 |
1.168 | 109500 | 0.1111 |
1.1733 | 110000 | 0.1286 |
1.1787 | 110500 | 0.1014 |
1.184 | 111000 | 0.1033 |
1.1893 | 111500 | 0.1124 |
1.1947 | 112000 | 0.1316 |
1.2 | 112500 | 0.1147 |
1.2053 | 113000 | 0.095 |
1.2107 | 113500 | 0.1074 |
1.216 | 114000 | 0.1183 |
1.2213 | 114500 | 0.1219 |
1.2267 | 115000 | 0.1264 |
1.232 | 115500 | 0.1339 |
1.2373 | 116000 | 0.0903 |
1.2427 | 116500 | 0.0923 |
1.248 | 117000 | 0.1028 |
1.2533 | 117500 | 0.093 |
1.2587 | 118000 | 0.1024 |
1.264 | 118500 | 0.1107 |
1.2693 | 119000 | 0.1078 |
1.2747 | 119500 | 0.0469 |
1.28 | 120000 | 0.107 |
1.2853 | 120500 | 0.1578 |
1.2907 | 121000 | 0.1012 |
1.296 | 121500 | 0.064 |
1.3013 | 122000 | 0.0816 |
1.3067 | 122500 | 0.0656 |
1.312 | 123000 | 0.1314 |
1.3173 | 123500 | 0.1345 |
1.3227 | 124000 | 0.1057 |
1.328 | 124500 | 0.1051 |
1.3333 | 125000 | 0.1246 |
1.3387 | 125500 | 0.0827 |
1.3440 | 126000 | 0.0763 |
1.3493 | 126500 | 0.0887 |
1.3547 | 127000 | 0.1332 |
1.3600 | 127500 | 0.0939 |
1.3653 | 128000 | 0.087 |
1.3707 | 128500 | 0.0671 |
1.376 | 129000 | 0.1377 |
1.3813 | 129500 | 0.1066 |
1.3867 | 130000 | 0.1224 |
1.392 | 130500 | 0.0797 |
1.3973 | 131000 | 0.0712 |
1.4027 | 131500 | 0.1141 |
1.408 | 132000 | 0.1045 |
1.4133 | 132500 | 0.0894 |
1.4187 | 133000 | 0.0897 |
1.424 | 133500 | 0.0779 |
1.4293 | 134000 | 0.0944 |
1.4347 | 134500 | 0.0674 |
1.44 | 135000 | 0.1532 |
1.4453 | 135500 | 0.0771 |
1.4507 | 136000 | 0.1154 |
1.456 | 136500 | 0.1159 |
1.4613 | 137000 | 0.147 |
1.4667 | 137500 | 0.0925 |
1.472 | 138000 | 0.0985 |
1.4773 | 138500 | 0.1023 |
1.4827 | 139000 | 0.082 |
1.488 | 139500 | 0.0947 |
1.4933 | 140000 | 0.0901 |
1.4987 | 140500 | 0.127 |
1.504 | 141000 | 0.1584 |
1.5093 | 141500 | 0.0734 |
1.5147 | 142000 | 0.1065 |
1.52 | 142500 | 0.0568 |
1.5253 | 143000 | 0.1081 |
1.5307 | 143500 | 0.0727 |
1.536 | 144000 | 0.1346 |
1.5413 | 144500 | 0.0894 |
1.5467 | 145000 | 0.0739 |
1.552 | 145500 | 0.0926 |
1.5573 | 146000 | 0.0984 |
1.5627 | 146500 | 0.0975 |
1.568 | 147000 | 0.0839 |
1.5733 | 147500 | 0.1053 |
1.5787 | 148000 | 0.1369 |
1.584 | 148500 | 0.093 |
1.5893 | 149000 | 0.1008 |
1.5947 | 149500 | 0.0981 |
1.6 | 150000 | 0.1071 |
1.6053 | 150500 | 0.0955 |
1.6107 | 151000 | 0.0901 |
1.616 | 151500 | 0.0803 |
1.6213 | 152000 | 0.1119 |
1.6267 | 152500 | 0.0679 |
1.6320 | 153000 | 0.1135 |
1.6373 | 153500 | 0.0768 |
1.6427 | 154000 | 0.0837 |
1.6480 | 154500 | 0.0857 |
1.6533 | 155000 | 0.0928 |
1.6587 | 155500 | 0.0808 |
1.6640 | 156000 | 0.0823 |
1.6693 | 156500 | 0.0713 |
1.6747 | 157000 | 0.0892 |
1.6800 | 157500 | 0.0914 |
1.6853 | 158000 | 0.0735 |
1.6907 | 158500 | 0.0827 |
1.696 | 159000 | 0.1006 |
1.7013 | 159500 | 0.0837 |
1.7067 | 160000 | 0.0812 |
1.712 | 160500 | 0.1056 |
1.7173 | 161000 | 0.0878 |
1.7227 | 161500 | 0.0625 |
1.728 | 162000 | 0.0965 |
1.7333 | 162500 | 0.1121 |
1.7387 | 163000 | 0.0794 |
1.744 | 163500 | 0.0969 |
1.7493 | 164000 | 0.0696 |
1.7547 | 164500 | 0.083 |
1.76 | 165000 | 0.0702 |
1.7653 | 165500 | 0.0768 |
1.7707 | 166000 | 0.0632 |
1.776 | 166500 | 0.0714 |
1.7813 | 167000 | 0.1 |
1.7867 | 167500 | 0.0665 |
1.792 | 168000 | 0.1139 |
1.7973 | 168500 | 0.1032 |
1.8027 | 169000 | 0.0983 |
1.808 | 169500 | 0.0812 |
1.8133 | 170000 | 0.0996 |
1.8187 | 170500 | 0.0872 |
1.8240 | 171000 | 0.0612 |
1.8293 | 171500 | 0.1038 |
1.8347 | 172000 | 0.0558 |
1.8400 | 172500 | 0.0595 |
1.8453 | 173000 | 0.0558 |
1.8507 | 173500 | 0.0717 |
1.8560 | 174000 | 0.058 |
1.8613 | 174500 | 0.0745 |
1.8667 | 175000 | 0.0749 |
1.8720 | 175500 | 0.074 |
1.8773 | 176000 | 0.0792 |
1.8827 | 176500 | 0.0574 |
1.888 | 177000 | 0.0968 |
1.8933 | 177500 | 0.0755 |
1.8987 | 178000 | 0.0852 |
1.904 | 178500 | 0.0502 |
1.9093 | 179000 | 0.0699 |
1.9147 | 179500 | 0.0793 |
1.92 | 180000 | 0.113 |
1.9253 | 180500 | 0.0708 |
1.9307 | 181000 | 0.0815 |
1.936 | 181500 | 0.0962 |
1.9413 | 182000 | 0.083 |
1.9467 | 182500 | 0.0761 |
1.952 | 183000 | 0.0776 |
1.9573 | 183500 | 0.0811 |
1.9627 | 184000 | 0.1159 |
1.968 | 184500 | 0.081 |
1.9733 | 185000 | 0.146 |
1.9787 | 185500 | 0.0715 |
1.984 | 186000 | 0.12 |
1.9893 | 186500 | 0.0692 |
1.9947 | 187000 | 0.07 |
2.0 | 187500 | 0.0935 |
2.0053 | 188000 | 0.0848 |
2.0107 | 188500 | 0.0474 |
2.016 | 189000 | 0.0417 |
2.0213 | 189500 | 0.04 |
2.0267 | 190000 | 0.1139 |
2.032 | 190500 | 0.0553 |
2.0373 | 191000 | 0.0495 |
2.0427 | 191500 | 0.0613 |
2.048 | 192000 | 0.0379 |
2.0533 | 192500 | 0.0487 |
2.0587 | 193000 | 0.0417 |
2.064 | 193500 | 0.0249 |
2.0693 | 194000 | 0.0418 |
2.0747 | 194500 | 0.043 |
2.08 | 195000 | 0.051 |
2.0853 | 195500 | 0.0339 |
2.0907 | 196000 | 0.0519 |
2.096 | 196500 | 0.0878 |
2.1013 | 197000 | 0.0432 |
2.1067 | 197500 | 0.0185 |
2.112 | 198000 | 0.085 |
2.1173 | 198500 | 0.0601 |
2.1227 | 199000 | 0.0935 |
2.128 | 199500 | 0.0538 |
2.1333 | 200000 | 0.0445 |
2.1387 | 200500 | 0.0499 |
2.144 | 201000 | 0.1029 |
2.1493 | 201500 | 0.0758 |
2.1547 | 202000 | 0.0648 |
2.16 | 202500 | 0.0612 |
2.1653 | 203000 | 0.0618 |
2.1707 | 203500 | 0.0566 |
2.176 | 204000 | 0.0179 |
2.1813 | 204500 | 0.0557 |
2.1867 | 205000 | 0.0321 |
2.192 | 205500 | 0.0562 |
2.1973 | 206000 | 0.0673 |
2.2027 | 206500 | 0.0286 |
2.208 | 207000 | 0.0284 |
2.2133 | 207500 | 0.0595 |
2.2187 | 208000 | 0.0693 |
2.224 | 208500 | 0.065 |
2.2293 | 209000 | 0.0546 |
2.2347 | 209500 | 0.0467 |
2.24 | 210000 | 0.0353 |
2.2453 | 210500 | 0.0475 |
2.2507 | 211000 | 0.0451 |
2.2560 | 211500 | 0.0348 |
2.2613 | 212000 | 0.031 |
2.2667 | 212500 | 0.0294 |
2.2720 | 213000 | 0.0462 |
2.2773 | 213500 | 0.0376 |
2.2827 | 214000 | 0.0607 |
2.288 | 214500 | 0.041 |
2.2933 | 215000 | 0.0462 |
2.2987 | 215500 | 0.0285 |
2.304 | 216000 | 0.0177 |
2.3093 | 216500 | 0.0577 |
2.3147 | 217000 | 0.0368 |
2.32 | 217500 | 0.041 |
2.3253 | 218000 | 0.0469 |
2.3307 | 218500 | 0.0669 |
2.336 | 219000 | 0.0288 |
2.3413 | 219500 | 0.0283 |
2.3467 | 220000 | 0.0293 |
2.352 | 220500 | 0.0364 |
2.3573 | 221000 | 0.0431 |
2.3627 | 221500 | 0.0478 |
2.368 | 222000 | 0.0223 |
2.3733 | 222500 | 0.0464 |
2.3787 | 223000 | 0.0598 |
2.384 | 223500 | 0.0716 |
2.3893 | 224000 | 0.0445 |
2.3947 | 224500 | 0.0356 |
2.4 | 225000 | 0.0344 |
2.4053 | 225500 | 0.0729 |
2.4107 | 226000 | 0.0256 |
2.416 | 226500 | 0.0383 |
2.4213 | 227000 | 0.0445 |
2.4267 | 227500 | 0.0286 |
2.432 | 228000 | 0.0216 |
2.4373 | 228500 | 0.0299 |
2.4427 | 229000 | 0.0674 |
2.448 | 229500 | 0.0353 |
2.4533 | 230000 | 0.0403 |
2.4587 | 230500 | 0.0693 |
2.464 | 231000 | 0.0701 |
2.4693 | 231500 | 0.0506 |
2.4747 | 232000 | 0.0374 |
2.48 | 232500 | 0.0511 |
2.4853 | 233000 | 0.047 |
2.4907 | 233500 | 0.0231 |
2.496 | 234000 | 0.0513 |
2.5013 | 234500 | 0.0955 |
2.5067 | 235000 | 0.049 |
2.512 | 235500 | 0.048 |
2.5173 | 236000 | 0.0302 |
2.5227 | 236500 | 0.0207 |
2.528 | 237000 | 0.0357 |
2.5333 | 237500 | 0.0297 |
2.5387 | 238000 | 0.0554 |
2.544 | 238500 | 0.0386 |
2.5493 | 239000 | 0.0249 |
2.5547 | 239500 | 0.0432 |
2.56 | 240000 | 0.0539 |
2.5653 | 240500 | 0.0348 |
2.5707 | 241000 | 0.0233 |
2.576 | 241500 | 0.0702 |
2.5813 | 242000 | 0.0393 |
2.5867 | 242500 | 0.0625 |
2.592 | 243000 | 0.0197 |
2.5973 | 243500 | 0.0399 |
2.6027 | 244000 | 0.0495 |
2.608 | 244500 | 0.0407 |
2.6133 | 245000 | 0.0412 |
2.6187 | 245500 | 0.0234 |
2.624 | 246000 | 0.0559 |
2.6293 | 246500 | 0.0555 |
2.6347 | 247000 | 0.0328 |
2.64 | 247500 | 0.0375 |
2.6453 | 248000 | 0.0257 |
2.6507 | 248500 | 0.0212 |
2.656 | 249000 | 0.0633 |
2.6613 | 249500 | 0.0268 |
2.6667 | 250000 | 0.0354 |
2.672 | 250500 | 0.0341 |
2.6773 | 251000 | 0.0337 |
2.6827 | 251500 | 0.0519 |
2.6880 | 252000 | 0.0386 |
2.6933 | 252500 | 0.0603 |
2.6987 | 253000 | 0.0358 |
2.7040 | 253500 | 0.0352 |
2.7093 | 254000 | 0.0448 |
2.7147 | 254500 | 0.037 |
2.7200 | 255000 | 0.0375 |
2.7253 | 255500 | 0.04 |
2.7307 | 256000 | 0.0729 |
2.7360 | 256500 | 0.0246 |
2.7413 | 257000 | 0.045 |
2.7467 | 257500 | 0.0333 |
2.752 | 258000 | 0.0212 |
2.7573 | 258500 | 0.0458 |
2.7627 | 259000 | 0.048 |
2.768 | 259500 | 0.0287 |
2.7733 | 260000 | 0.0345 |
2.7787 | 260500 | 0.0459 |
2.784 | 261000 | 0.0449 |
2.7893 | 261500 | 0.0518 |
2.7947 | 262000 | 0.0433 |
2.8 | 262500 | 0.0572 |
2.8053 | 263000 | 0.0357 |
2.8107 | 263500 | 0.0394 |
2.816 | 264000 | 0.0531 |
2.8213 | 264500 | 0.0294 |
2.8267 | 265000 | 0.039 |
2.832 | 265500 | 0.0505 |
2.8373 | 266000 | 0.0167 |
2.8427 | 266500 | 0.031 |
2.848 | 267000 | 0.0362 |
2.8533 | 267500 | 0.0246 |
2.8587 | 268000 | 0.0317 |
2.864 | 268500 | 0.0296 |
2.8693 | 269000 | 0.0297 |
2.8747 | 269500 | 0.0517 |
2.88 | 270000 | 0.019 |
2.8853 | 270500 | 0.0358 |
2.8907 | 271000 | 0.0589 |
2.896 | 271500 | 0.031 |
2.9013 | 272000 | 0.0421 |
2.9067 | 272500 | 0.0422 |
2.912 | 273000 | 0.016 |
2.9173 | 273500 | 0.0645 |
2.9227 | 274000 | 0.0514 |
2.928 | 274500 | 0.0173 |
2.9333 | 275000 | 0.0432 |
2.9387 | 275500 | 0.0594 |
2.944 | 276000 | 0.0228 |
2.9493 | 276500 | 0.0152 |
2.9547 | 277000 | 0.0579 |
2.96 | 277500 | 0.0578 |
2.9653 | 278000 | 0.0246 |
2.9707 | 278500 | 0.0609 |
2.976 | 279000 | 0.0613 |
2.9813 | 279500 | 0.0589 |
2.9867 | 280000 | 0.047 |
2.992 | 280500 | 0.0264 |
2.9973 | 281000 | 0.0464 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}