agentlans commited on
Commit
ef43872
·
verified ·
1 Parent(s): 84014c7

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,920 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: agentlans/multilingual-e5-small-aligned
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:3000000
11
+ - loss:CoSENTLoss
12
+ widget:
13
+ - source_sentence: Jesus answered them.
14
+ sentences:
15
+ - ישוע ענה להם.
16
+ - आत्ताच नीघ.
17
+ - Мы надеялись, что дождь прекратится до обеда.
18
+ - source_sentence: Foreign books are sold at the shop.
19
+ sentences:
20
+ - Tak, det er alt.
21
+ - Корабль бросил якорь.
22
+ - Les livres étrangers sont vendus à la boutique.
23
+ - source_sentence: Cats usually hate dogs.
24
+ sentences:
25
+ - Куда вы ходили в прошлое воскресенье?
26
+ - The bottles of beer that I brought to the party were redundant; the host's family
27
+ owned a brewery.
28
+ - Mir tut der Arm weh.
29
+ - source_sentence: How foolish I was not to discover that simple lie!
30
+ sentences:
31
+ - Tenho umas perguntas pra fazer, mas não quero te incomodar.
32
+ - Mi piacciono di più le mele.
33
+ - Quel idiot j'étais de n'avoir pas découvert ce simple mensonge !
34
+ - source_sentence: Esta es mi amiga Rachel, fuimos al instituto juntos.
35
+ sentences:
36
+ - Το σχολείο μας έχει εννιά τάξεις.
37
+ - When applying to American universities, your TOEFL score is only one factor.
38
+ - Je n'ai pas encore pris ma décision.
39
+ ---
40
+
41
+ # SentenceTransformer based on agentlans/multilingual-e5-small-aligned
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [agentlans/multilingual-e5-small-aligned](https://huggingface.co/agentlans/multilingual-e5-small-aligned). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** Sentence Transformer
49
+ - **Base model:** [agentlans/multilingual-e5-small-aligned](https://huggingface.co/agentlans/multilingual-e5-small-aligned) <!-- at revision 2876d21d801703ad25135704219f92d970e48971 -->
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Output Dimensionality:** 384 dimensions
52
+ - **Similarity Function:** Cosine Similarity
53
+ <!-- - **Training Dataset:** Unknown -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
60
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
61
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
62
+
63
+ ### Full Model Architecture
64
+
65
+ ```
66
+ SentenceTransformer(
67
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
68
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
69
+ (2): Normalize()
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("agentlans/multilingual-e5-small-aligned-v2")
89
+ # Run inference
90
+ sentences = [
91
+ 'Esta es mi amiga Rachel, fuimos al instituto juntos.',
92
+ "Je n'ai pas encore pris ma décision.",
93
+ 'When applying to American universities, your TOEFL score is only one factor.',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 384]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 3,000,000 training samples
149
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence_0 | sentence_1 | label |
152
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 5 tokens</li><li>mean: 11.16 tokens</li><li>max: 55 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 12.27 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | sentence_0 | sentence_1 | label |
157
+ |:------------------------------------------|:-----------------------------------------|:-----------------|
158
+ | <code>Bring your friends with you.</code> | <code>Traga seus amigos com você.</code> | <code>1.0</code> |
159
+ | <code>I've been there already.</code> | <code>Você tem algo mais barato?</code> | <code>0.0</code> |
160
+ | <code>All my homework is done.</code> | <code>माझा सगळा होमवर्क झाला आहे.</code> | <code>1.0</code> |
161
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "pairwise_cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Training Hyperparameters
170
+ #### Non-Default Hyperparameters
171
+
172
+ - `per_device_train_batch_size`: 32
173
+ - `per_device_eval_batch_size`: 32
174
+ - `multi_dataset_batch_sampler`: round_robin
175
+
176
+ #### All Hyperparameters
177
+ <details><summary>Click to expand</summary>
178
+
179
+ - `overwrite_output_dir`: False
180
+ - `do_predict`: False
181
+ - `eval_strategy`: no
182
+ - `prediction_loss_only`: True
183
+ - `per_device_train_batch_size`: 32
184
+ - `per_device_eval_batch_size`: 32
185
+ - `per_gpu_train_batch_size`: None
186
+ - `per_gpu_eval_batch_size`: None
187
+ - `gradient_accumulation_steps`: 1
188
+ - `eval_accumulation_steps`: None
189
+ - `torch_empty_cache_steps`: None
190
+ - `learning_rate`: 5e-05
191
+ - `weight_decay`: 0.0
192
+ - `adam_beta1`: 0.9
193
+ - `adam_beta2`: 0.999
194
+ - `adam_epsilon`: 1e-08
195
+ - `max_grad_norm`: 1
196
+ - `num_train_epochs`: 3
197
+ - `max_steps`: -1
198
+ - `lr_scheduler_type`: linear
199
+ - `lr_scheduler_kwargs`: {}
200
+ - `warmup_ratio`: 0.0
201
+ - `warmup_steps`: 0
202
+ - `log_level`: passive
203
+ - `log_level_replica`: warning
204
+ - `log_on_each_node`: True
205
+ - `logging_nan_inf_filter`: True
206
+ - `save_safetensors`: True
207
+ - `save_on_each_node`: False
208
+ - `save_only_model`: False
209
+ - `restore_callback_states_from_checkpoint`: False
210
+ - `no_cuda`: False
211
+ - `use_cpu`: False
212
+ - `use_mps_device`: False
213
+ - `seed`: 42
214
+ - `data_seed`: None
215
+ - `jit_mode_eval`: False
216
+ - `use_ipex`: False
217
+ - `bf16`: False
218
+ - `fp16`: False
219
+ - `fp16_opt_level`: O1
220
+ - `half_precision_backend`: auto
221
+ - `bf16_full_eval`: False
222
+ - `fp16_full_eval`: False
223
+ - `tf32`: None
224
+ - `local_rank`: 0
225
+ - `ddp_backend`: None
226
+ - `tpu_num_cores`: None
227
+ - `tpu_metrics_debug`: False
228
+ - `debug`: []
229
+ - `dataloader_drop_last`: False
230
+ - `dataloader_num_workers`: 0
231
+ - `dataloader_prefetch_factor`: None
232
+ - `past_index`: -1
233
+ - `disable_tqdm`: False
234
+ - `remove_unused_columns`: True
235
+ - `label_names`: None
236
+ - `load_best_model_at_end`: False
237
+ - `ignore_data_skip`: False
238
+ - `fsdp`: []
239
+ - `fsdp_min_num_params`: 0
240
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
241
+ - `fsdp_transformer_layer_cls_to_wrap`: None
242
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
243
+ - `deepspeed`: None
244
+ - `label_smoothing_factor`: 0.0
245
+ - `optim`: adamw_torch
246
+ - `optim_args`: None
247
+ - `adafactor`: False
248
+ - `group_by_length`: False
249
+ - `length_column_name`: length
250
+ - `ddp_find_unused_parameters`: None
251
+ - `ddp_bucket_cap_mb`: None
252
+ - `ddp_broadcast_buffers`: False
253
+ - `dataloader_pin_memory`: True
254
+ - `dataloader_persistent_workers`: False
255
+ - `skip_memory_metrics`: True
256
+ - `use_legacy_prediction_loop`: False
257
+ - `push_to_hub`: False
258
+ - `resume_from_checkpoint`: None
259
+ - `hub_model_id`: None
260
+ - `hub_strategy`: every_save
261
+ - `hub_private_repo`: False
262
+ - `hub_always_push`: False
263
+ - `gradient_checkpointing`: False
264
+ - `gradient_checkpointing_kwargs`: None
265
+ - `include_inputs_for_metrics`: False
266
+ - `include_for_metrics`: []
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `eval_on_start`: False
288
+ - `use_liger_kernel`: False
289
+ - `eval_use_gather_object`: False
290
+ - `average_tokens_across_devices`: False
291
+ - `prompts`: None
292
+ - `batch_sampler`: batch_sampler
293
+ - `multi_dataset_batch_sampler`: round_robin
294
+
295
+ </details>
296
+
297
+ ### Training Logs
298
+ <details><summary>Click to expand</summary>
299
+
300
+ | Epoch | Step | Training Loss |
301
+ |:------:|:------:|:-------------:|
302
+ | 0.0053 | 500 | 0.835 |
303
+ | 0.0107 | 1000 | 0.7012 |
304
+ | 0.016 | 1500 | 0.6765 |
305
+ | 0.0213 | 2000 | 0.4654 |
306
+ | 0.0267 | 2500 | 0.7546 |
307
+ | 0.032 | 3000 | 0.6098 |
308
+ | 0.0373 | 3500 | 0.644 |
309
+ | 0.0427 | 4000 | 0.5318 |
310
+ | 0.048 | 4500 | 0.5638 |
311
+ | 0.0533 | 5000 | 0.5556 |
312
+ | 0.0587 | 5500 | 0.5165 |
313
+ | 0.064 | 6000 | 0.4083 |
314
+ | 0.0693 | 6500 | 0.4683 |
315
+ | 0.0747 | 7000 | 0.5414 |
316
+ | 0.08 | 7500 | 0.4678 |
317
+ | 0.0853 | 8000 | 0.4225 |
318
+ | 0.0907 | 8500 | 0.4552 |
319
+ | 0.096 | 9000 | 0.4551 |
320
+ | 0.1013 | 9500 | 0.4347 |
321
+ | 0.1067 | 10000 | 0.292 |
322
+ | 0.112 | 10500 | 0.4677 |
323
+ | 0.1173 | 11000 | 0.3567 |
324
+ | 0.1227 | 11500 | 0.4663 |
325
+ | 0.128 | 12000 | 0.4333 |
326
+ | 0.1333 | 12500 | 0.375 |
327
+ | 0.1387 | 13000 | 0.4183 |
328
+ | 0.144 | 13500 | 0.5745 |
329
+ | 0.1493 | 14000 | 0.4569 |
330
+ | 0.1547 | 14500 | 0.426 |
331
+ | 0.16 | 15000 | 0.4903 |
332
+ | 0.1653 | 15500 | 0.4287 |
333
+ | 0.1707 | 16000 | 0.4375 |
334
+ | 0.176 | 16500 | 0.377 |
335
+ | 0.1813 | 17000 | 0.3848 |
336
+ | 0.1867 | 17500 | 0.3366 |
337
+ | 0.192 | 18000 | 0.3784 |
338
+ | 0.1973 | 18500 | 0.399 |
339
+ | 0.2027 | 19000 | 0.3798 |
340
+ | 0.208 | 19500 | 0.3275 |
341
+ | 0.2133 | 20000 | 0.3594 |
342
+ | 0.2187 | 20500 | 0.3555 |
343
+ | 0.224 | 21000 | 0.3565 |
344
+ | 0.2293 | 21500 | 0.4264 |
345
+ | 0.2347 | 22000 | 0.4138 |
346
+ | 0.24 | 22500 | 0.3149 |
347
+ | 0.2453 | 23000 | 0.3397 |
348
+ | 0.2507 | 23500 | 0.359 |
349
+ | 0.256 | 24000 | 0.3311 |
350
+ | 0.2613 | 24500 | 0.3632 |
351
+ | 0.2667 | 25000 | 0.366 |
352
+ | 0.272 | 25500 | 0.2899 |
353
+ | 0.2773 | 26000 | 0.2611 |
354
+ | 0.2827 | 26500 | 0.3497 |
355
+ | 0.288 | 27000 | 0.3534 |
356
+ | 0.2933 | 27500 | 0.273 |
357
+ | 0.2987 | 28000 | 0.3199 |
358
+ | 0.304 | 28500 | 0.2527 |
359
+ | 0.3093 | 29000 | 0.2755 |
360
+ | 0.3147 | 29500 | 0.3684 |
361
+ | 0.32 | 30000 | 0.347 |
362
+ | 0.3253 | 30500 | 0.2537 |
363
+ | 0.3307 | 31000 | 0.3665 |
364
+ | 0.336 | 31500 | 0.2512 |
365
+ | 0.3413 | 32000 | 0.2913 |
366
+ | 0.3467 | 32500 | 0.2619 |
367
+ | 0.352 | 33000 | 0.2573 |
368
+ | 0.3573 | 33500 | 0.3036 |
369
+ | 0.3627 | 34000 | 0.3388 |
370
+ | 0.368 | 34500 | 0.2384 |
371
+ | 0.3733 | 35000 | 0.31 |
372
+ | 0.3787 | 35500 | 0.3461 |
373
+ | 0.384 | 36000 | 0.378 |
374
+ | 0.3893 | 36500 | 0.2409 |
375
+ | 0.3947 | 37000 | 0.2969 |
376
+ | 0.4 | 37500 | 0.2881 |
377
+ | 0.4053 | 38000 | 0.3612 |
378
+ | 0.4107 | 38500 | 0.2662 |
379
+ | 0.416 | 39000 | 0.2796 |
380
+ | 0.4213 | 39500 | 0.3298 |
381
+ | 0.4267 | 40000 | 0.2828 |
382
+ | 0.432 | 40500 | 0.2367 |
383
+ | 0.4373 | 41000 | 0.2661 |
384
+ | 0.4427 | 41500 | 0.393 |
385
+ | 0.448 | 42000 | 0.2875 |
386
+ | 0.4533 | 42500 | 0.203 |
387
+ | 0.4587 | 43000 | 0.3211 |
388
+ | 0.464 | 43500 | 0.3404 |
389
+ | 0.4693 | 44000 | 0.315 |
390
+ | 0.4747 | 44500 | 0.3018 |
391
+ | 0.48 | 45000 | 0.2491 |
392
+ | 0.4853 | 45500 | 0.2584 |
393
+ | 0.4907 | 46000 | 0.2583 |
394
+ | 0.496 | 46500 | 0.3447 |
395
+ | 0.5013 | 47000 | 0.4332 |
396
+ | 0.5067 | 47500 | 0.297 |
397
+ | 0.512 | 48000 | 0.2697 |
398
+ | 0.5173 | 48500 | 0.2349 |
399
+ | 0.5227 | 49000 | 0.2176 |
400
+ | 0.528 | 49500 | 0.2775 |
401
+ | 0.5333 | 50000 | 0.2508 |
402
+ | 0.5387 | 50500 | 0.291 |
403
+ | 0.544 | 51000 | 0.2672 |
404
+ | 0.5493 | 51500 | 0.2638 |
405
+ | 0.5547 | 52000 | 0.2877 |
406
+ | 0.56 | 52500 | 0.2758 |
407
+ | 0.5653 | 53000 | 0.264 |
408
+ | 0.5707 | 53500 | 0.2372 |
409
+ | 0.576 | 54000 | 0.3384 |
410
+ | 0.5813 | 54500 | 0.2459 |
411
+ | 0.5867 | 55000 | 0.3047 |
412
+ | 0.592 | 55500 | 0.1926 |
413
+ | 0.5973 | 56000 | 0.2573 |
414
+ | 0.6027 | 56500 | 0.2816 |
415
+ | 0.608 | 57000 | 0.285 |
416
+ | 0.6133 | 57500 | 0.2397 |
417
+ | 0.6187 | 58000 | 0.1935 |
418
+ | 0.624 | 58500 | 0.3281 |
419
+ | 0.6293 | 59000 | 0.3306 |
420
+ | 0.6347 | 59500 | 0.2067 |
421
+ | 0.64 | 60000 | 0.2483 |
422
+ | 0.6453 | 60500 | 0.2719 |
423
+ | 0.6507 | 61000 | 0.2585 |
424
+ | 0.656 | 61500 | 0.2385 |
425
+ | 0.6613 | 62000 | 0.2229 |
426
+ | 0.6667 | 62500 | 0.2311 |
427
+ | 0.672 | 63000 | 0.2664 |
428
+ | 0.6773 | 63500 | 0.209 |
429
+ | 0.6827 | 64000 | 0.2643 |
430
+ | 0.688 | 64500 | 0.2108 |
431
+ | 0.6933 | 65000 | 0.3063 |
432
+ | 0.6987 | 65500 | 0.1802 |
433
+ | 0.704 | 66000 | 0.2285 |
434
+ | 0.7093 | 66500 | 0.2065 |
435
+ | 0.7147 | 67000 | 0.2467 |
436
+ | 0.72 | 67500 | 0.2178 |
437
+ | 0.7253 | 68000 | 0.2217 |
438
+ | 0.7307 | 68500 | 0.2549 |
439
+ | 0.736 | 69000 | 0.2026 |
440
+ | 0.7413 | 69500 | 0.2609 |
441
+ | 0.7467 | 70000 | 0.2393 |
442
+ | 0.752 | 70500 | 0.1958 |
443
+ | 0.7573 | 71000 | 0.2214 |
444
+ | 0.7627 | 71500 | 0.2079 |
445
+ | 0.768 | 72000 | 0.1574 |
446
+ | 0.7733 | 72500 | 0.2356 |
447
+ | 0.7787 | 73000 | 0.1864 |
448
+ | 0.784 | 73500 | 0.257 |
449
+ | 0.7893 | 74000 | 0.2149 |
450
+ | 0.7947 | 74500 | 0.2519 |
451
+ | 0.8 | 75000 | 0.2746 |
452
+ | 0.8053 | 75500 | 0.2145 |
453
+ | 0.8107 | 76000 | 0.2732 |
454
+ | 0.816 | 76500 | 0.2456 |
455
+ | 0.8213 | 77000 | 0.1841 |
456
+ | 0.8267 | 77500 | 0.1876 |
457
+ | 0.832 | 78000 | 0.2661 |
458
+ | 0.8373 | 78500 | 0.1293 |
459
+ | 0.8427 | 79000 | 0.2018 |
460
+ | 0.848 | 79500 | 0.1854 |
461
+ | 0.8533 | 80000 | 0.1644 |
462
+ | 0.8587 | 80500 | 0.1844 |
463
+ | 0.864 | 81000 | 0.1937 |
464
+ | 0.8693 | 81500 | 0.1486 |
465
+ | 0.8747 | 82000 | 0.244 |
466
+ | 0.88 | 82500 | 0.131 |
467
+ | 0.8853 | 83000 | 0.215 |
468
+ | 0.8907 | 83500 | 0.2398 |
469
+ | 0.896 | 84000 | 0.2014 |
470
+ | 0.9013 | 84500 | 0.1703 |
471
+ | 0.9067 | 85000 | 0.2009 |
472
+ | 0.912 | 85500 | 0.1712 |
473
+ | 0.9173 | 86000 | 0.2649 |
474
+ | 0.9227 | 86500 | 0.2149 |
475
+ | 0.928 | 87000 | 0.1912 |
476
+ | 0.9333 | 87500 | 0.1902 |
477
+ | 0.9387 | 88000 | 0.2609 |
478
+ | 0.944 | 88500 | 0.1846 |
479
+ | 0.9493 | 89000 | 0.1485 |
480
+ | 0.9547 | 89500 | 0.2076 |
481
+ | 0.96 | 90000 | 0.2449 |
482
+ | 0.9653 | 90500 | 0.2025 |
483
+ | 0.9707 | 91000 | 0.2635 |
484
+ | 0.976 | 91500 | 0.2596 |
485
+ | 0.9813 | 92000 | 0.2221 |
486
+ | 0.9867 | 92500 | 0.2168 |
487
+ | 0.992 | 93000 | 0.192 |
488
+ | 0.9973 | 93500 | 0.1966 |
489
+ | 1.0027 | 94000 | 0.2112 |
490
+ | 1.008 | 94500 | 0.1628 |
491
+ | 1.0133 | 95000 | 0.1059 |
492
+ | 1.0187 | 95500 | 0.1403 |
493
+ | 1.024 | 96000 | 0.1726 |
494
+ | 1.0293 | 96500 | 0.1973 |
495
+ | 1.0347 | 97000 | 0.1682 |
496
+ | 1.04 | 97500 | 0.1319 |
497
+ | 1.0453 | 98000 | 0.1427 |
498
+ | 1.0507 | 98500 | 0.1448 |
499
+ | 1.056 | 99000 | 0.1215 |
500
+ | 1.0613 | 99500 | 0.1064 |
501
+ | 1.0667 | 100000 | 0.0856 |
502
+ | 1.072 | 100500 | 0.1046 |
503
+ | 1.0773 | 101000 | 0.1127 |
504
+ | 1.0827 | 101500 | 0.0988 |
505
+ | 1.088 | 102000 | 0.1598 |
506
+ | 1.0933 | 102500 | 0.1592 |
507
+ | 1.0987 | 103000 | 0.1122 |
508
+ | 1.104 | 103500 | 0.0771 |
509
+ | 1.1093 | 104000 | 0.1355 |
510
+ | 1.1147 | 104500 | 0.1265 |
511
+ | 1.12 | 105000 | 0.1464 |
512
+ | 1.1253 | 105500 | 0.1578 |
513
+ | 1.1307 | 106000 | 0.1017 |
514
+ | 1.1360 | 106500 | 0.1047 |
515
+ | 1.1413 | 107000 | 0.1865 |
516
+ | 1.1467 | 107500 | 0.1721 |
517
+ | 1.152 | 108000 | 0.1096 |
518
+ | 1.1573 | 108500 | 0.181 |
519
+ | 1.1627 | 109000 | 0.1261 |
520
+ | 1.168 | 109500 | 0.1111 |
521
+ | 1.1733 | 110000 | 0.1286 |
522
+ | 1.1787 | 110500 | 0.1014 |
523
+ | 1.184 | 111000 | 0.1033 |
524
+ | 1.1893 | 111500 | 0.1124 |
525
+ | 1.1947 | 112000 | 0.1316 |
526
+ | 1.2 | 112500 | 0.1147 |
527
+ | 1.2053 | 113000 | 0.095 |
528
+ | 1.2107 | 113500 | 0.1074 |
529
+ | 1.216 | 114000 | 0.1183 |
530
+ | 1.2213 | 114500 | 0.1219 |
531
+ | 1.2267 | 115000 | 0.1264 |
532
+ | 1.232 | 115500 | 0.1339 |
533
+ | 1.2373 | 116000 | 0.0903 |
534
+ | 1.2427 | 116500 | 0.0923 |
535
+ | 1.248 | 117000 | 0.1028 |
536
+ | 1.2533 | 117500 | 0.093 |
537
+ | 1.2587 | 118000 | 0.1024 |
538
+ | 1.264 | 118500 | 0.1107 |
539
+ | 1.2693 | 119000 | 0.1078 |
540
+ | 1.2747 | 119500 | 0.0469 |
541
+ | 1.28 | 120000 | 0.107 |
542
+ | 1.2853 | 120500 | 0.1578 |
543
+ | 1.2907 | 121000 | 0.1012 |
544
+ | 1.296 | 121500 | 0.064 |
545
+ | 1.3013 | 122000 | 0.0816 |
546
+ | 1.3067 | 122500 | 0.0656 |
547
+ | 1.312 | 123000 | 0.1314 |
548
+ | 1.3173 | 123500 | 0.1345 |
549
+ | 1.3227 | 124000 | 0.1057 |
550
+ | 1.328 | 124500 | 0.1051 |
551
+ | 1.3333 | 125000 | 0.1246 |
552
+ | 1.3387 | 125500 | 0.0827 |
553
+ | 1.3440 | 126000 | 0.0763 |
554
+ | 1.3493 | 126500 | 0.0887 |
555
+ | 1.3547 | 127000 | 0.1332 |
556
+ | 1.3600 | 127500 | 0.0939 |
557
+ | 1.3653 | 128000 | 0.087 |
558
+ | 1.3707 | 128500 | 0.0671 |
559
+ | 1.376 | 129000 | 0.1377 |
560
+ | 1.3813 | 129500 | 0.1066 |
561
+ | 1.3867 | 130000 | 0.1224 |
562
+ | 1.392 | 130500 | 0.0797 |
563
+ | 1.3973 | 131000 | 0.0712 |
564
+ | 1.4027 | 131500 | 0.1141 |
565
+ | 1.408 | 132000 | 0.1045 |
566
+ | 1.4133 | 132500 | 0.0894 |
567
+ | 1.4187 | 133000 | 0.0897 |
568
+ | 1.424 | 133500 | 0.0779 |
569
+ | 1.4293 | 134000 | 0.0944 |
570
+ | 1.4347 | 134500 | 0.0674 |
571
+ | 1.44 | 135000 | 0.1532 |
572
+ | 1.4453 | 135500 | 0.0771 |
573
+ | 1.4507 | 136000 | 0.1154 |
574
+ | 1.456 | 136500 | 0.1159 |
575
+ | 1.4613 | 137000 | 0.147 |
576
+ | 1.4667 | 137500 | 0.0925 |
577
+ | 1.472 | 138000 | 0.0985 |
578
+ | 1.4773 | 138500 | 0.1023 |
579
+ | 1.4827 | 139000 | 0.082 |
580
+ | 1.488 | 139500 | 0.0947 |
581
+ | 1.4933 | 140000 | 0.0901 |
582
+ | 1.4987 | 140500 | 0.127 |
583
+ | 1.504 | 141000 | 0.1584 |
584
+ | 1.5093 | 141500 | 0.0734 |
585
+ | 1.5147 | 142000 | 0.1065 |
586
+ | 1.52 | 142500 | 0.0568 |
587
+ | 1.5253 | 143000 | 0.1081 |
588
+ | 1.5307 | 143500 | 0.0727 |
589
+ | 1.536 | 144000 | 0.1346 |
590
+ | 1.5413 | 144500 | 0.0894 |
591
+ | 1.5467 | 145000 | 0.0739 |
592
+ | 1.552 | 145500 | 0.0926 |
593
+ | 1.5573 | 146000 | 0.0984 |
594
+ | 1.5627 | 146500 | 0.0975 |
595
+ | 1.568 | 147000 | 0.0839 |
596
+ | 1.5733 | 147500 | 0.1053 |
597
+ | 1.5787 | 148000 | 0.1369 |
598
+ | 1.584 | 148500 | 0.093 |
599
+ | 1.5893 | 149000 | 0.1008 |
600
+ | 1.5947 | 149500 | 0.0981 |
601
+ | 1.6 | 150000 | 0.1071 |
602
+ | 1.6053 | 150500 | 0.0955 |
603
+ | 1.6107 | 151000 | 0.0901 |
604
+ | 1.616 | 151500 | 0.0803 |
605
+ | 1.6213 | 152000 | 0.1119 |
606
+ | 1.6267 | 152500 | 0.0679 |
607
+ | 1.6320 | 153000 | 0.1135 |
608
+ | 1.6373 | 153500 | 0.0768 |
609
+ | 1.6427 | 154000 | 0.0837 |
610
+ | 1.6480 | 154500 | 0.0857 |
611
+ | 1.6533 | 155000 | 0.0928 |
612
+ | 1.6587 | 155500 | 0.0808 |
613
+ | 1.6640 | 156000 | 0.0823 |
614
+ | 1.6693 | 156500 | 0.0713 |
615
+ | 1.6747 | 157000 | 0.0892 |
616
+ | 1.6800 | 157500 | 0.0914 |
617
+ | 1.6853 | 158000 | 0.0735 |
618
+ | 1.6907 | 158500 | 0.0827 |
619
+ | 1.696 | 159000 | 0.1006 |
620
+ | 1.7013 | 159500 | 0.0837 |
621
+ | 1.7067 | 160000 | 0.0812 |
622
+ | 1.712 | 160500 | 0.1056 |
623
+ | 1.7173 | 161000 | 0.0878 |
624
+ | 1.7227 | 161500 | 0.0625 |
625
+ | 1.728 | 162000 | 0.0965 |
626
+ | 1.7333 | 162500 | 0.1121 |
627
+ | 1.7387 | 163000 | 0.0794 |
628
+ | 1.744 | 163500 | 0.0969 |
629
+ | 1.7493 | 164000 | 0.0696 |
630
+ | 1.7547 | 164500 | 0.083 |
631
+ | 1.76 | 165000 | 0.0702 |
632
+ | 1.7653 | 165500 | 0.0768 |
633
+ | 1.7707 | 166000 | 0.0632 |
634
+ | 1.776 | 166500 | 0.0714 |
635
+ | 1.7813 | 167000 | 0.1 |
636
+ | 1.7867 | 167500 | 0.0665 |
637
+ | 1.792 | 168000 | 0.1139 |
638
+ | 1.7973 | 168500 | 0.1032 |
639
+ | 1.8027 | 169000 | 0.0983 |
640
+ | 1.808 | 169500 | 0.0812 |
641
+ | 1.8133 | 170000 | 0.0996 |
642
+ | 1.8187 | 170500 | 0.0872 |
643
+ | 1.8240 | 171000 | 0.0612 |
644
+ | 1.8293 | 171500 | 0.1038 |
645
+ | 1.8347 | 172000 | 0.0558 |
646
+ | 1.8400 | 172500 | 0.0595 |
647
+ | 1.8453 | 173000 | 0.0558 |
648
+ | 1.8507 | 173500 | 0.0717 |
649
+ | 1.8560 | 174000 | 0.058 |
650
+ | 1.8613 | 174500 | 0.0745 |
651
+ | 1.8667 | 175000 | 0.0749 |
652
+ | 1.8720 | 175500 | 0.074 |
653
+ | 1.8773 | 176000 | 0.0792 |
654
+ | 1.8827 | 176500 | 0.0574 |
655
+ | 1.888 | 177000 | 0.0968 |
656
+ | 1.8933 | 177500 | 0.0755 |
657
+ | 1.8987 | 178000 | 0.0852 |
658
+ | 1.904 | 178500 | 0.0502 |
659
+ | 1.9093 | 179000 | 0.0699 |
660
+ | 1.9147 | 179500 | 0.0793 |
661
+ | 1.92 | 180000 | 0.113 |
662
+ | 1.9253 | 180500 | 0.0708 |
663
+ | 1.9307 | 181000 | 0.0815 |
664
+ | 1.936 | 181500 | 0.0962 |
665
+ | 1.9413 | 182000 | 0.083 |
666
+ | 1.9467 | 182500 | 0.0761 |
667
+ | 1.952 | 183000 | 0.0776 |
668
+ | 1.9573 | 183500 | 0.0811 |
669
+ | 1.9627 | 184000 | 0.1159 |
670
+ | 1.968 | 184500 | 0.081 |
671
+ | 1.9733 | 185000 | 0.146 |
672
+ | 1.9787 | 185500 | 0.0715 |
673
+ | 1.984 | 186000 | 0.12 |
674
+ | 1.9893 | 186500 | 0.0692 |
675
+ | 1.9947 | 187000 | 0.07 |
676
+ | 2.0 | 187500 | 0.0935 |
677
+ | 2.0053 | 188000 | 0.0848 |
678
+ | 2.0107 | 188500 | 0.0474 |
679
+ | 2.016 | 189000 | 0.0417 |
680
+ | 2.0213 | 189500 | 0.04 |
681
+ | 2.0267 | 190000 | 0.1139 |
682
+ | 2.032 | 190500 | 0.0553 |
683
+ | 2.0373 | 191000 | 0.0495 |
684
+ | 2.0427 | 191500 | 0.0613 |
685
+ | 2.048 | 192000 | 0.0379 |
686
+ | 2.0533 | 192500 | 0.0487 |
687
+ | 2.0587 | 193000 | 0.0417 |
688
+ | 2.064 | 193500 | 0.0249 |
689
+ | 2.0693 | 194000 | 0.0418 |
690
+ | 2.0747 | 194500 | 0.043 |
691
+ | 2.08 | 195000 | 0.051 |
692
+ | 2.0853 | 195500 | 0.0339 |
693
+ | 2.0907 | 196000 | 0.0519 |
694
+ | 2.096 | 196500 | 0.0878 |
695
+ | 2.1013 | 197000 | 0.0432 |
696
+ | 2.1067 | 197500 | 0.0185 |
697
+ | 2.112 | 198000 | 0.085 |
698
+ | 2.1173 | 198500 | 0.0601 |
699
+ | 2.1227 | 199000 | 0.0935 |
700
+ | 2.128 | 199500 | 0.0538 |
701
+ | 2.1333 | 200000 | 0.0445 |
702
+ | 2.1387 | 200500 | 0.0499 |
703
+ | 2.144 | 201000 | 0.1029 |
704
+ | 2.1493 | 201500 | 0.0758 |
705
+ | 2.1547 | 202000 | 0.0648 |
706
+ | 2.16 | 202500 | 0.0612 |
707
+ | 2.1653 | 203000 | 0.0618 |
708
+ | 2.1707 | 203500 | 0.0566 |
709
+ | 2.176 | 204000 | 0.0179 |
710
+ | 2.1813 | 204500 | 0.0557 |
711
+ | 2.1867 | 205000 | 0.0321 |
712
+ | 2.192 | 205500 | 0.0562 |
713
+ | 2.1973 | 206000 | 0.0673 |
714
+ | 2.2027 | 206500 | 0.0286 |
715
+ | 2.208 | 207000 | 0.0284 |
716
+ | 2.2133 | 207500 | 0.0595 |
717
+ | 2.2187 | 208000 | 0.0693 |
718
+ | 2.224 | 208500 | 0.065 |
719
+ | 2.2293 | 209000 | 0.0546 |
720
+ | 2.2347 | 209500 | 0.0467 |
721
+ | 2.24 | 210000 | 0.0353 |
722
+ | 2.2453 | 210500 | 0.0475 |
723
+ | 2.2507 | 211000 | 0.0451 |
724
+ | 2.2560 | 211500 | 0.0348 |
725
+ | 2.2613 | 212000 | 0.031 |
726
+ | 2.2667 | 212500 | 0.0294 |
727
+ | 2.2720 | 213000 | 0.0462 |
728
+ | 2.2773 | 213500 | 0.0376 |
729
+ | 2.2827 | 214000 | 0.0607 |
730
+ | 2.288 | 214500 | 0.041 |
731
+ | 2.2933 | 215000 | 0.0462 |
732
+ | 2.2987 | 215500 | 0.0285 |
733
+ | 2.304 | 216000 | 0.0177 |
734
+ | 2.3093 | 216500 | 0.0577 |
735
+ | 2.3147 | 217000 | 0.0368 |
736
+ | 2.32 | 217500 | 0.041 |
737
+ | 2.3253 | 218000 | 0.0469 |
738
+ | 2.3307 | 218500 | 0.0669 |
739
+ | 2.336 | 219000 | 0.0288 |
740
+ | 2.3413 | 219500 | 0.0283 |
741
+ | 2.3467 | 220000 | 0.0293 |
742
+ | 2.352 | 220500 | 0.0364 |
743
+ | 2.3573 | 221000 | 0.0431 |
744
+ | 2.3627 | 221500 | 0.0478 |
745
+ | 2.368 | 222000 | 0.0223 |
746
+ | 2.3733 | 222500 | 0.0464 |
747
+ | 2.3787 | 223000 | 0.0598 |
748
+ | 2.384 | 223500 | 0.0716 |
749
+ | 2.3893 | 224000 | 0.0445 |
750
+ | 2.3947 | 224500 | 0.0356 |
751
+ | 2.4 | 225000 | 0.0344 |
752
+ | 2.4053 | 225500 | 0.0729 |
753
+ | 2.4107 | 226000 | 0.0256 |
754
+ | 2.416 | 226500 | 0.0383 |
755
+ | 2.4213 | 227000 | 0.0445 |
756
+ | 2.4267 | 227500 | 0.0286 |
757
+ | 2.432 | 228000 | 0.0216 |
758
+ | 2.4373 | 228500 | 0.0299 |
759
+ | 2.4427 | 229000 | 0.0674 |
760
+ | 2.448 | 229500 | 0.0353 |
761
+ | 2.4533 | 230000 | 0.0403 |
762
+ | 2.4587 | 230500 | 0.0693 |
763
+ | 2.464 | 231000 | 0.0701 |
764
+ | 2.4693 | 231500 | 0.0506 |
765
+ | 2.4747 | 232000 | 0.0374 |
766
+ | 2.48 | 232500 | 0.0511 |
767
+ | 2.4853 | 233000 | 0.047 |
768
+ | 2.4907 | 233500 | 0.0231 |
769
+ | 2.496 | 234000 | 0.0513 |
770
+ | 2.5013 | 234500 | 0.0955 |
771
+ | 2.5067 | 235000 | 0.049 |
772
+ | 2.512 | 235500 | 0.048 |
773
+ | 2.5173 | 236000 | 0.0302 |
774
+ | 2.5227 | 236500 | 0.0207 |
775
+ | 2.528 | 237000 | 0.0357 |
776
+ | 2.5333 | 237500 | 0.0297 |
777
+ | 2.5387 | 238000 | 0.0554 |
778
+ | 2.544 | 238500 | 0.0386 |
779
+ | 2.5493 | 239000 | 0.0249 |
780
+ | 2.5547 | 239500 | 0.0432 |
781
+ | 2.56 | 240000 | 0.0539 |
782
+ | 2.5653 | 240500 | 0.0348 |
783
+ | 2.5707 | 241000 | 0.0233 |
784
+ | 2.576 | 241500 | 0.0702 |
785
+ | 2.5813 | 242000 | 0.0393 |
786
+ | 2.5867 | 242500 | 0.0625 |
787
+ | 2.592 | 243000 | 0.0197 |
788
+ | 2.5973 | 243500 | 0.0399 |
789
+ | 2.6027 | 244000 | 0.0495 |
790
+ | 2.608 | 244500 | 0.0407 |
791
+ | 2.6133 | 245000 | 0.0412 |
792
+ | 2.6187 | 245500 | 0.0234 |
793
+ | 2.624 | 246000 | 0.0559 |
794
+ | 2.6293 | 246500 | 0.0555 |
795
+ | 2.6347 | 247000 | 0.0328 |
796
+ | 2.64 | 247500 | 0.0375 |
797
+ | 2.6453 | 248000 | 0.0257 |
798
+ | 2.6507 | 248500 | 0.0212 |
799
+ | 2.656 | 249000 | 0.0633 |
800
+ | 2.6613 | 249500 | 0.0268 |
801
+ | 2.6667 | 250000 | 0.0354 |
802
+ | 2.672 | 250500 | 0.0341 |
803
+ | 2.6773 | 251000 | 0.0337 |
804
+ | 2.6827 | 251500 | 0.0519 |
805
+ | 2.6880 | 252000 | 0.0386 |
806
+ | 2.6933 | 252500 | 0.0603 |
807
+ | 2.6987 | 253000 | 0.0358 |
808
+ | 2.7040 | 253500 | 0.0352 |
809
+ | 2.7093 | 254000 | 0.0448 |
810
+ | 2.7147 | 254500 | 0.037 |
811
+ | 2.7200 | 255000 | 0.0375 |
812
+ | 2.7253 | 255500 | 0.04 |
813
+ | 2.7307 | 256000 | 0.0729 |
814
+ | 2.7360 | 256500 | 0.0246 |
815
+ | 2.7413 | 257000 | 0.045 |
816
+ | 2.7467 | 257500 | 0.0333 |
817
+ | 2.752 | 258000 | 0.0212 |
818
+ | 2.7573 | 258500 | 0.0458 |
819
+ | 2.7627 | 259000 | 0.048 |
820
+ | 2.768 | 259500 | 0.0287 |
821
+ | 2.7733 | 260000 | 0.0345 |
822
+ | 2.7787 | 260500 | 0.0459 |
823
+ | 2.784 | 261000 | 0.0449 |
824
+ | 2.7893 | 261500 | 0.0518 |
825
+ | 2.7947 | 262000 | 0.0433 |
826
+ | 2.8 | 262500 | 0.0572 |
827
+ | 2.8053 | 263000 | 0.0357 |
828
+ | 2.8107 | 263500 | 0.0394 |
829
+ | 2.816 | 264000 | 0.0531 |
830
+ | 2.8213 | 264500 | 0.0294 |
831
+ | 2.8267 | 265000 | 0.039 |
832
+ | 2.832 | 265500 | 0.0505 |
833
+ | 2.8373 | 266000 | 0.0167 |
834
+ | 2.8427 | 266500 | 0.031 |
835
+ | 2.848 | 267000 | 0.0362 |
836
+ | 2.8533 | 267500 | 0.0246 |
837
+ | 2.8587 | 268000 | 0.0317 |
838
+ | 2.864 | 268500 | 0.0296 |
839
+ | 2.8693 | 269000 | 0.0297 |
840
+ | 2.8747 | 269500 | 0.0517 |
841
+ | 2.88 | 270000 | 0.019 |
842
+ | 2.8853 | 270500 | 0.0358 |
843
+ | 2.8907 | 271000 | 0.0589 |
844
+ | 2.896 | 271500 | 0.031 |
845
+ | 2.9013 | 272000 | 0.0421 |
846
+ | 2.9067 | 272500 | 0.0422 |
847
+ | 2.912 | 273000 | 0.016 |
848
+ | 2.9173 | 273500 | 0.0645 |
849
+ | 2.9227 | 274000 | 0.0514 |
850
+ | 2.928 | 274500 | 0.0173 |
851
+ | 2.9333 | 275000 | 0.0432 |
852
+ | 2.9387 | 275500 | 0.0594 |
853
+ | 2.944 | 276000 | 0.0228 |
854
+ | 2.9493 | 276500 | 0.0152 |
855
+ | 2.9547 | 277000 | 0.0579 |
856
+ | 2.96 | 277500 | 0.0578 |
857
+ | 2.9653 | 278000 | 0.0246 |
858
+ | 2.9707 | 278500 | 0.0609 |
859
+ | 2.976 | 279000 | 0.0613 |
860
+ | 2.9813 | 279500 | 0.0589 |
861
+ | 2.9867 | 280000 | 0.047 |
862
+ | 2.992 | 280500 | 0.0264 |
863
+ | 2.9973 | 281000 | 0.0464 |
864
+
865
+ </details>
866
+
867
+ ### Framework Versions
868
+ - Python: 3.10.12
869
+ - Sentence Transformers: 3.3.0
870
+ - Transformers: 4.46.3
871
+ - PyTorch: 2.5.1+cu124
872
+ - Accelerate: 1.1.1
873
+ - Datasets: 3.2.0
874
+ - Tokenizers: 0.20.3
875
+
876
+ ## Citation
877
+
878
+ ### BibTeX
879
+
880
+ #### Sentence Transformers
881
+ ```bibtex
882
+ @inproceedings{reimers-2019-sentence-bert,
883
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
884
+ author = "Reimers, Nils and Gurevych, Iryna",
885
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
886
+ month = "11",
887
+ year = "2019",
888
+ publisher = "Association for Computational Linguistics",
889
+ url = "https://arxiv.org/abs/1908.10084",
890
+ }
891
+ ```
892
+
893
+ #### CoSENTLoss
894
+ ```bibtex
895
+ @online{kexuefm-8847,
896
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
897
+ author={Su Jianlin},
898
+ year={2022},
899
+ month={Jan},
900
+ url={https://kexue.fm/archives/8847},
901
+ }
902
+ ```
903
+
904
+ <!--
905
+ ## Glossary
906
+
907
+ *Clearly define terms in order to be accessible across audiences.*
908
+ -->
909
+
910
+ <!--
911
+ ## Model Card Authors
912
+
913
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
914
+ -->
915
+
916
+ <!--
917
+ ## Model Card Contact
918
+
919
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
920
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "agentlans/multilingual-e5-small-aligned",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "tokenizer_class": "XLMRobertaTokenizer",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.46.3",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.0",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a5060c9e53df86bebcc6edca2ace1f23d8712da538a83e609eb25b1dc1d8a3
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef04f2b385d1514f500e779207ace0f53e30895ce37563179e29f4022d28ca38
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "sp_model_kwargs": {},
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }