|
--- |
|
license: apache-2.0 |
|
base_model: projecte-aina/roberta-base-ca-v2-cased-te |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 080524_epoch_6 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 080524_epoch_6 |
|
|
|
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8270 |
|
- Accuracy: 0.8151 |
|
- Precision: 0.8431 |
|
- Recall: 0.8151 |
|
- F1: 0.8113 |
|
- Ratio: 0.6429 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 2 |
|
- seed: 47 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 20 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- lr_scheduler_warmup_steps: 4 |
|
- num_epochs: 1 |
|
- label_smoothing_factor: 0.1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| |
|
| 0.2961 | 0.1176 | 10 | 0.8340 | 0.8109 | 0.8442 | 0.8109 | 0.8062 | 0.6555 | |
|
| 0.336 | 0.2353 | 20 | 0.7492 | 0.8403 | 0.8524 | 0.8403 | 0.8390 | 0.5924 | |
|
| 0.3842 | 0.3529 | 30 | 0.7532 | 0.8403 | 0.8548 | 0.8403 | 0.8387 | 0.6008 | |
|
| 0.3397 | 0.4706 | 40 | 0.7603 | 0.8235 | 0.8350 | 0.8235 | 0.8220 | 0.5924 | |
|
| 0.4029 | 0.5882 | 50 | 0.8467 | 0.8109 | 0.8368 | 0.8109 | 0.8072 | 0.6387 | |
|
| 0.3564 | 0.7059 | 60 | 0.8701 | 0.7983 | 0.8322 | 0.7983 | 0.7930 | 0.6597 | |
|
| 0.3718 | 0.8235 | 70 | 0.8404 | 0.8151 | 0.8431 | 0.8151 | 0.8113 | 0.6429 | |
|
| 0.4576 | 0.9412 | 80 | 0.8292 | 0.8151 | 0.8431 | 0.8151 | 0.8113 | 0.6429 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|