File size: 2,504 Bytes
7181833 f662fe7 7181833 f662fe7 7181833 f662fe7 7181833 f662fe7 7181833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 080524_epoch_6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 080524_epoch_6
This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8270
- Accuracy: 0.8151
- Precision: 0.8431
- Recall: 0.8151
- F1: 0.8113
- Ratio: 0.6429
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 2
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.2961 | 0.1176 | 10 | 0.8340 | 0.8109 | 0.8442 | 0.8109 | 0.8062 | 0.6555 |
| 0.336 | 0.2353 | 20 | 0.7492 | 0.8403 | 0.8524 | 0.8403 | 0.8390 | 0.5924 |
| 0.3842 | 0.3529 | 30 | 0.7532 | 0.8403 | 0.8548 | 0.8403 | 0.8387 | 0.6008 |
| 0.3397 | 0.4706 | 40 | 0.7603 | 0.8235 | 0.8350 | 0.8235 | 0.8220 | 0.5924 |
| 0.4029 | 0.5882 | 50 | 0.8467 | 0.8109 | 0.8368 | 0.8109 | 0.8072 | 0.6387 |
| 0.3564 | 0.7059 | 60 | 0.8701 | 0.7983 | 0.8322 | 0.7983 | 0.7930 | 0.6597 |
| 0.3718 | 0.8235 | 70 | 0.8404 | 0.8151 | 0.8431 | 0.8151 | 0.8113 | 0.6429 |
| 0.4576 | 0.9412 | 80 | 0.8292 | 0.8151 | 0.8431 | 0.8151 | 0.8113 | 0.6429 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|