File size: 2,504 Bytes
7181833
 
 
 
 
 
 
 
 
 
 
f662fe7
7181833
 
 
 
 
 
f662fe7
7181833
 
 
f662fe7
 
 
 
 
 
7181833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f662fe7
 
 
 
 
 
 
 
7181833
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: projecte-aina/roberta-base-ca-v2-cased-te
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 080524_epoch_6
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 080524_epoch_6

This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8270
- Accuracy: 0.8151
- Precision: 0.8431
- Recall: 0.8151
- F1: 0.8113
- Ratio: 0.6429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 10
- eval_batch_size: 2
- seed: 47
- gradient_accumulation_steps: 2
- total_train_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- lr_scheduler_warmup_steps: 4
- num_epochs: 1
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Ratio  |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.2961        | 0.1176 | 10   | 0.8340          | 0.8109   | 0.8442    | 0.8109 | 0.8062 | 0.6555 |
| 0.336         | 0.2353 | 20   | 0.7492          | 0.8403   | 0.8524    | 0.8403 | 0.8390 | 0.5924 |
| 0.3842        | 0.3529 | 30   | 0.7532          | 0.8403   | 0.8548    | 0.8403 | 0.8387 | 0.6008 |
| 0.3397        | 0.4706 | 40   | 0.7603          | 0.8235   | 0.8350    | 0.8235 | 0.8220 | 0.5924 |
| 0.4029        | 0.5882 | 50   | 0.8467          | 0.8109   | 0.8368    | 0.8109 | 0.8072 | 0.6387 |
| 0.3564        | 0.7059 | 60   | 0.8701          | 0.7983   | 0.8322    | 0.7983 | 0.7930 | 0.6597 |
| 0.3718        | 0.8235 | 70   | 0.8404          | 0.8151   | 0.8431    | 0.8151 | 0.8113 | 0.6429 |
| 0.4576        | 0.9412 | 80   | 0.8292          | 0.8151   | 0.8431    | 0.8151 | 0.8113 | 0.6429 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1