sreemanti-abacus's picture
Add model card numbers to Dracarys2-Llama3.1-70B-Instruct model
3ca8e6b verified
|
raw
history blame
4.41 kB
---
license: llama3
library_name: transformers
tags: []
---
# Dracarys2-Llama-3.1-70B-Instruct
### Built with Meta Llama 3
# Introduction
We introduce the latest in the Smaug series, the Dracarys family of finetunes targeting coding performance improvements
across a variety of base models.
This variant is a finetune of [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct)
Compared to meta-llama/Meta-Llama-3.1-70B-Instruct, Dracarys has better LiveCodeBench scores (see evaluation results below).
### Model Description
- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
## How to use
The prompt format is unchanged from Llama 3 70B Instruct (see evaluations for prompt details for LCB)
### Use with transformers
See the snippet below for usage with Transformers:
```python
import transformers
import torch
model_id = "abacusai/Dracarys-72B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are data science coding assistant that generates Python code using Pandas and Numpy."},
{"role": "user", "content": "Write code to select rows from the dataframe `df` having the maximum `temp` for each `city`"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
pipeline.tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
# Evaluation Results
## LiveCodeBench
| Model | Code Generation | Code Execution |Test Output Prediction |
|-------------------------------------|-----------------|----------------|-----------------------|
| **Dracarys2-Llama-3.1-70B-Instruct**| **33.44** | 48.26 | **52.10** |
| Meta-Llama-3.1-70B-Instruct | 32.23 | 48.768 | 41.40 |
## Breakdown of LiveCodeBench CodeGeneration
| Model | Easy | Medium | Hard |
|-------------------------------------|-----------------|----------------|-----------------------|
| **Dracarys2-Llama-3.1-70B-Instruct**| **71.29** | **18.48** | **3.57** |
| Meta-Llama-3.1-70B-Instruct | 68.4 | 17.99 | 3.57 |
## Breakdown of LiveCodeBench CodeExecution
| Model | COT | Non-COT |
|-------------------------------------|-----------------|----------------|
| **Dracarys2-Llama-3.1-70B-Instruct**| **75.55** | 48.26 |
| Meta-Llama-3.1-70B-Instruct | 70.14 | 48.768 |
## Breakdown of LiveCodeBench TestOutputPrediction
| Model | Easy | Medium | Hard |
|-------------------------------------|-----------------|----------------|-----------------------|
| **Dracarys2-Llama-3.1-70B-Instruct**| **63.53** | **47.30** | **43.61** |
| Meta-Llama-3.1-70B-Instruct | 51.22 | 35.91 | 34.30 |
## LiveBench(Aug update)
| Model | Global Average | Coding Average | Reasoning Average| Mathematics Average | Data Analysis Average | Language Average | IF Average |
|-------------------------------------|----------------|----------------|------------------|---------------------|-----------------------|------------------|-------------|
| **Dracarys2-Llama-3.1-70B-Instruct**| **47.8** | **36.3** | **47.3** | **38.9** | 46.1 | 41.5 | 76.6 |
| Meta-Llama-3.1-70B-Instruct | 45.1 | 30.7 | 35.3 | 37.0 | 48.4 | 42.1 | 77.2 |