sreemanti-abacus's picture
Add model card numbers to Dracarys2-Llama3.1-70B-Instruct model
3ca8e6b verified
|
raw
history blame
4.41 kB
metadata
license: llama3
library_name: transformers
tags: []

Dracarys2-Llama-3.1-70B-Instruct

Built with Meta Llama 3

Introduction

We introduce the latest in the Smaug series, the Dracarys family of finetunes targeting coding performance improvements across a variety of base models.

This variant is a finetune of meta-llama/Meta-Llama-3.1-70B-Instruct

Compared to meta-llama/Meta-Llama-3.1-70B-Instruct, Dracarys has better LiveCodeBench scores (see evaluation results below).

Model Description

How to use

The prompt format is unchanged from Llama 3 70B Instruct (see evaluations for prompt details for LCB)

Use with transformers

See the snippet below for usage with Transformers:

import transformers
import torch

model_id = "abacusai/Dracarys-72B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are data science coding assistant that generates Python code using Pandas and Numpy."},
    {"role": "user", "content": "Write code to select rows from the dataframe `df` having the maximum `temp` for each `city`"},
]

prompt = pipeline.tokenizer.apply_chat_template(
        messages, 
        tokenize=False, 
        add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>"),
    pipeline.tokenizer.convert_tokens_to_ids("<|end_of_text|>"),
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

Evaluation Results

LiveCodeBench

Model Code Generation Code Execution Test Output Prediction
Dracarys2-Llama-3.1-70B-Instruct 33.44 48.26 52.10
Meta-Llama-3.1-70B-Instruct 32.23 48.768 41.40

Breakdown of LiveCodeBench CodeGeneration

Model Easy Medium Hard
Dracarys2-Llama-3.1-70B-Instruct 71.29 18.48 3.57
Meta-Llama-3.1-70B-Instruct 68.4 17.99 3.57

Breakdown of LiveCodeBench CodeExecution

Model COT Non-COT
Dracarys2-Llama-3.1-70B-Instruct 75.55 48.26
Meta-Llama-3.1-70B-Instruct 70.14 48.768

Breakdown of LiveCodeBench TestOutputPrediction

Model Easy Medium Hard
Dracarys2-Llama-3.1-70B-Instruct 63.53 47.30 43.61
Meta-Llama-3.1-70B-Instruct 51.22 35.91 34.30

LiveBench(Aug update)

Model Global Average Coding Average Reasoning Average Mathematics Average Data Analysis Average Language Average IF Average
Dracarys2-Llama-3.1-70B-Instruct 47.8 36.3 47.3 38.9 46.1 41.5 76.6
Meta-Llama-3.1-70B-Instruct 45.1 30.7 35.3 37.0 48.4 42.1 77.2