aadhistii's picture
End of training
03fdf84 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: mbert-en-finetuned-sinta-e10
    results: []

mbert-en-finetuned-sinta-e10

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1755
  • F1: 0.7669
  • Roc Auc: 0.8281
  • Accuracy: 0.4681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 141 0.2791 0.5873 0.7299 0.1631
No log 2.0 282 0.2282 0.7026 0.7830 0.3475
No log 3.0 423 0.2069 0.7022 0.7853 0.3546
0.2721 4.0 564 0.1903 0.7344 0.8029 0.3901
0.2721 5.0 705 0.1817 0.7467 0.8148 0.4397
0.2721 6.0 846 0.1755 0.7669 0.8281 0.4681
0.2721 7.0 987 0.1706 0.7628 0.8236 0.4539
0.1659 8.0 1128 0.1666 0.7664 0.8292 0.4823
0.1659 9.0 1269 0.1650 0.7626 0.8274 0.4681
0.1659 10.0 1410 0.1645 0.7649 0.8290 0.4681

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1