Edit model card

mbert-en-finetuned-sinta-e10

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1755
  • F1: 0.7669
  • Roc Auc: 0.8281
  • Accuracy: 0.4681

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 141 0.2791 0.5873 0.7299 0.1631
No log 2.0 282 0.2282 0.7026 0.7830 0.3475
No log 3.0 423 0.2069 0.7022 0.7853 0.3546
0.2721 4.0 564 0.1903 0.7344 0.8029 0.3901
0.2721 5.0 705 0.1817 0.7467 0.8148 0.4397
0.2721 6.0 846 0.1755 0.7669 0.8281 0.4681
0.2721 7.0 987 0.1706 0.7628 0.8236 0.4539
0.1659 8.0 1128 0.1666 0.7664 0.8292 0.4823
0.1659 9.0 1269 0.1650 0.7626 0.8274 0.4681
0.1659 10.0 1410 0.1645 0.7649 0.8290 0.4681

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aadhistii/mbert-en-finetuned-sinta-e10

Finetuned
(500)
this model