|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: Large-dataset-factor |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Large-dataset-factor |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8394 |
|
- Rouge1: 0.6016 |
|
- Rouge2: 0.3238 |
|
- Rougel: 0.3867 |
|
- Rougelsum: 0.3867 |
|
- Gen Len: 142.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 1 | 1.2175 | 0.4598 | 0.2293 | 0.3085 | 0.3085 | 75.5 | |
|
| No log | 2.0 | 2 | 1.0135 | 0.5862 | 0.3326 | 0.432 | 0.432 | 114.5 | |
|
| No log | 3.0 | 3 | 0.9291 | 0.5584 | 0.2891 | 0.3831 | 0.3831 | 142.0 | |
|
| No log | 4.0 | 4 | 0.8851 | 0.5572 | 0.2773 | 0.3739 | 0.3739 | 142.0 | |
|
| No log | 5.0 | 5 | 0.8642 | 0.5822 | 0.3125 | 0.3886 | 0.3886 | 142.0 | |
|
| No log | 6.0 | 6 | 0.8517 | 0.5725 | 0.2977 | 0.3692 | 0.3692 | 142.0 | |
|
| No log | 7.0 | 7 | 0.8427 | 0.6016 | 0.3238 | 0.3867 | 0.3867 | 142.0 | |
|
| No log | 8.0 | 8 | 0.8394 | 0.6016 | 0.3238 | 0.3867 | 0.3867 | 142.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.19.1 |
|
|