Large-dataset-factor

This model is a fine-tuned version of facebook/bart-large-cnn on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8394
  • Rouge1: 0.6016
  • Rouge2: 0.3238
  • Rougel: 0.3867
  • Rougelsum: 0.3867
  • Gen Len: 142.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 1 1.2175 0.4598 0.2293 0.3085 0.3085 75.5
No log 2.0 2 1.0135 0.5862 0.3326 0.432 0.432 114.5
No log 3.0 3 0.9291 0.5584 0.2891 0.3831 0.3831 142.0
No log 4.0 4 0.8851 0.5572 0.2773 0.3739 0.3739 142.0
No log 5.0 5 0.8642 0.5822 0.3125 0.3886 0.3886 142.0
No log 6.0 6 0.8517 0.5725 0.2977 0.3692 0.3692 142.0
No log 7.0 7 0.8427 0.6016 0.3238 0.3867 0.3867 142.0
No log 8.0 8 0.8394 0.6016 0.3238 0.3867 0.3867 142.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Zohaib002/Large-dataset-factor

Finetuned
(313)
this model