metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget: []
inference: true
model-index:
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: f1
value: 0.7727272727272727
name: F1
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 |
---|---|
all | 0.7727 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Zlovoblachko/dimension1_setfit")
# Run inference
preds = model("I loved the spiderman movie!")
Training Details
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (4.4226261631087265e-05, 4.4226261631087265e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0006 | 1 | 0.2748 | - |
0.0280 | 50 | 0.2678 | - |
0.0559 | 100 | 0.2688 | - |
0.0839 | 150 | 0.2709 | - |
0.1119 | 200 | 0.2656 | - |
0.1398 | 250 | 0.259 | - |
0.1678 | 300 | 0.2565 | - |
0.1957 | 350 | 0.2655 | - |
0.2237 | 400 | 0.2737 | - |
0.2517 | 450 | 0.2501 | - |
0.2796 | 500 | 0.2512 | - |
0.3076 | 550 | 0.2381 | - |
0.3356 | 600 | 0.2568 | - |
0.3635 | 650 | 0.2642 | - |
0.3915 | 700 | 0.2743 | - |
0.4195 | 750 | 0.2635 | - |
0.4474 | 800 | 0.263 | - |
0.4754 | 850 | 0.2541 | - |
0.5034 | 900 | 0.2492 | - |
0.5313 | 950 | 0.26 | - |
0.5593 | 1000 | 0.257 | - |
0.5872 | 1050 | 0.2525 | - |
0.6152 | 1100 | 0.2594 | - |
0.6432 | 1150 | 0.2656 | - |
0.6711 | 1200 | 0.2737 | - |
0.6991 | 1250 | 0.2683 | - |
0.7271 | 1300 | 0.259 | - |
0.7550 | 1350 | 0.2617 | - |
0.7830 | 1400 | 0.294 | - |
0.8110 | 1450 | 0.2446 | - |
0.8389 | 1500 | 0.2618 | - |
0.8669 | 1550 | 0.2562 | - |
0.8949 | 1600 | 0.264 | - |
0.9228 | 1650 | 0.2534 | - |
0.9508 | 1700 | 0.2484 | - |
0.9787 | 1750 | 0.2666 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Datasets: 3.0.2
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}