--- base_model: sentence-transformers/all-MiniLM-L6-v2 library_name: setfit metrics: - f1 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: [] inference: true model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: f1 value: 0.7727272727272727 name: F1 --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | F1 | |:--------|:-------| | **all** | 0.7727 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Zlovoblachko/dimension1_setfit") # Run inference preds = model("I loved the spiderman movie!") ``` ## Training Details ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (4.4226261631087265e-05, 4.4226261631087265e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0006 | 1 | 0.2748 | - | | 0.0280 | 50 | 0.2678 | - | | 0.0559 | 100 | 0.2688 | - | | 0.0839 | 150 | 0.2709 | - | | 0.1119 | 200 | 0.2656 | - | | 0.1398 | 250 | 0.259 | - | | 0.1678 | 300 | 0.2565 | - | | 0.1957 | 350 | 0.2655 | - | | 0.2237 | 400 | 0.2737 | - | | 0.2517 | 450 | 0.2501 | - | | 0.2796 | 500 | 0.2512 | - | | 0.3076 | 550 | 0.2381 | - | | 0.3356 | 600 | 0.2568 | - | | 0.3635 | 650 | 0.2642 | - | | 0.3915 | 700 | 0.2743 | - | | 0.4195 | 750 | 0.2635 | - | | 0.4474 | 800 | 0.263 | - | | 0.4754 | 850 | 0.2541 | - | | 0.5034 | 900 | 0.2492 | - | | 0.5313 | 950 | 0.26 | - | | 0.5593 | 1000 | 0.257 | - | | 0.5872 | 1050 | 0.2525 | - | | 0.6152 | 1100 | 0.2594 | - | | 0.6432 | 1150 | 0.2656 | - | | 0.6711 | 1200 | 0.2737 | - | | 0.6991 | 1250 | 0.2683 | - | | 0.7271 | 1300 | 0.259 | - | | 0.7550 | 1350 | 0.2617 | - | | 0.7830 | 1400 | 0.294 | - | | 0.8110 | 1450 | 0.2446 | - | | 0.8389 | 1500 | 0.2618 | - | | 0.8669 | 1550 | 0.2562 | - | | 0.8949 | 1600 | 0.264 | - | | 0.9228 | 1650 | 0.2534 | - | | 0.9508 | 1700 | 0.2484 | - | | 0.9787 | 1750 | 0.2666 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.2.1 - Transformers: 4.44.2 - PyTorch: 2.5.0+cu121 - Datasets: 3.0.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```