|
--- |
|
license: apache-2.0 |
|
--- |
|
Using LoRA to finetune [bigsciene/bloom-1b7](https://huggingface.co/bigscience/bloom-1b7) model with [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) data. |
|
|
|
Sample code to run |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Zayt/bloom-1b7-lora-merged-oasst") |
|
model = AutoModelForCausalLM.from_pretrained("Zayt/bloom-1b7-lora-merged-oasst", device_map='auto', torch_dtype=torch.float16) |
|
|
|
prompt_format = "### Input:\n{human}\n\n### Response:\n" |
|
text = prompt_format.format(**{"human": "what is the weather today?"}) |
|
inputs = tokenizer(text, return_tensors='pt').to(model.device) |
|
input_length = inputs.input_ids.shape[1] |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, max_new_tokens=400, do_sample=True, temperature=0.5, top_k=50, return_dict_in_generate=True, no_repeat_ngram_size=5, |
|
pad_token_id=tokenizer.pad_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id |
|
) |
|
token = outputs.sequences[0, input_length:] |
|
output_str = tokenizer.decode(token) |
|
|
|
print(output_str) |
|
``` |
|
|