Using LoRA to finetune bigsciene/bloom-1b7 model with oasst1 data.
Sample code to run
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Zayt/bloom-1b7-lora-merged-oasst")
model = AutoModelForCausalLM.from_pretrained("Zayt/bloom-1b7-lora-merged-oasst", device_map='auto', torch_dtype=torch.float16)
prompt_format = "### Input:\n{human}\n\n### Response:\n"
text = prompt_format.format(**{"human": "what is the weather today?"})
inputs = tokenizer(text, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=400, do_sample=True, temperature=0.5, top_k=50, return_dict_in_generate=True, no_repeat_ngram_size=5,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.