|
import os.path as osp |
|
from functools import partial |
|
|
|
import mmcv |
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from mmdet import digit_version |
|
from mmdet.models.dense_heads import RetinaHead, YOLOV3Head |
|
from .utils import (WrapFunction, convert_result_list, ort_validate, |
|
verify_model) |
|
|
|
data_path = osp.join(osp.dirname(__file__), 'data') |
|
|
|
if digit_version(torch.__version__) <= digit_version('1.5.0'): |
|
pytest.skip( |
|
'ort backend does not support version below 1.5.0', |
|
allow_module_level=True) |
|
|
|
|
|
def retinanet_config(): |
|
"""RetinanNet Head Config.""" |
|
|
|
head_cfg = dict( |
|
stacked_convs=6, |
|
feat_channels=2, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
octave_base_scale=4, |
|
scales_per_octave=3, |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[8, 16, 32, 64, 128]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0])) |
|
|
|
test_cfg = mmcv.Config( |
|
dict( |
|
deploy_nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.5), |
|
max_per_img=100)) |
|
|
|
model = RetinaHead( |
|
num_classes=4, in_channels=1, test_cfg=test_cfg, **head_cfg) |
|
model.requires_grad_(False) |
|
model.eval() |
|
|
|
return model |
|
|
|
|
|
def test_retina_head_forward_single(): |
|
"""Test RetinaNet Head single forward in torch and onnxruntime env.""" |
|
|
|
retina_model = retinanet_config() |
|
|
|
feat = torch.rand(1, retina_model.in_channels, 32, 32) |
|
wrap_model = WrapFunction(retina_model.forward_single) |
|
ort_validate(wrap_model, feat) |
|
|
|
|
|
def test_retina_head_forward(): |
|
"""Test RetinaNet Head forward in torch and onnxruntime env.""" |
|
|
|
retina_model = retinanet_config() |
|
s = 128 |
|
|
|
|
|
feats = [ |
|
torch.rand(1, retina_model.in_channels, s // (2**(i + 2)), |
|
s // (2**(i + 2))) |
|
for i in range(len(retina_model.anchor_generator.strides)) |
|
] |
|
|
|
wrap_model = WrapFunction(retina_model.forward) |
|
ort_validate(wrap_model, feats) |
|
|
|
|
|
def test_retinanet_head_get_bboxes(): |
|
"""Test RetinaNet Head _get_bboxes() in torch and onnxruntime env.""" |
|
|
|
retina_model = retinanet_config() |
|
s = 128 |
|
img_metas = [{ |
|
'img_shape_for_onnx': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3), |
|
'img_shape': (s, s, 2) |
|
}] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
retina_head_data = 'retina_head_get_bboxes.pkl' |
|
feats = mmcv.load(osp.join(data_path, retina_head_data)) |
|
cls_score = feats[:5] |
|
bboxes = feats[5:] |
|
|
|
retina_model.get_bboxes = partial( |
|
retina_model.get_bboxes, img_metas=img_metas) |
|
wrap_model = WrapFunction(retina_model.get_bboxes) |
|
wrap_model.cpu().eval() |
|
with torch.no_grad(): |
|
torch.onnx.export( |
|
wrap_model, (cls_score, bboxes), |
|
'tmp.onnx', |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
do_constant_folding=True, |
|
verbose=False, |
|
opset_version=11) |
|
|
|
onnx_outputs = verify_model(cls_score + bboxes) |
|
|
|
torch_outputs = wrap_model.forward(cls_score, bboxes) |
|
torch_outputs = convert_result_list(torch_outputs) |
|
torch_outputs = [ |
|
torch_output.detach().numpy() for torch_output in torch_outputs |
|
] |
|
|
|
|
|
for i in range(len(onnx_outputs)): |
|
np.testing.assert_allclose( |
|
torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05) |
|
|
|
|
|
def yolo_config(): |
|
"""YoloV3 Head Config.""" |
|
|
|
head_cfg = dict( |
|
anchor_generator=dict( |
|
type='YOLOAnchorGenerator', |
|
base_sizes=[[(116, 90), (156, 198), (373, 326)], |
|
[(30, 61), (62, 45), (59, 119)], |
|
[(10, 13), (16, 30), (33, 23)]], |
|
strides=[32, 16, 8]), |
|
bbox_coder=dict(type='YOLOBBoxCoder')) |
|
|
|
test_cfg = mmcv.Config( |
|
dict( |
|
deploy_nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
conf_thr=0.005, |
|
nms=dict(type='nms', iou_threshold=0.45), |
|
max_per_img=100)) |
|
|
|
model = YOLOV3Head( |
|
num_classes=4, |
|
in_channels=[1, 1, 1], |
|
out_channels=[16, 8, 4], |
|
test_cfg=test_cfg, |
|
**head_cfg) |
|
model.requires_grad_(False) |
|
model.eval() |
|
|
|
return model |
|
|
|
|
|
def test_yolov3_head_forward(): |
|
"""Test Yolov3 head forward() in torch and ort env.""" |
|
|
|
yolo_model = yolo_config() |
|
|
|
|
|
feats = [ |
|
torch.rand(1, 1, 64 // (2**(i + 2)), 64 // (2**(i + 2))) |
|
for i in range(len(yolo_model.in_channels)) |
|
] |
|
|
|
wrap_model = WrapFunction(yolo_model.forward) |
|
ort_validate(wrap_model, feats) |
|
|
|
|
|
def test_yolov3_head_get_bboxes(): |
|
"""Test yolov3 head get_bboxes() in torch and ort env.""" |
|
|
|
yolo_model = yolo_config() |
|
|
|
s = 128 |
|
img_metas = [{ |
|
'img_shape_for_onnx': (s, s, 3), |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
|
|
|
|
|
|
|
|
|
|
yolo_head_data = 'yolov3_head_get_bboxes.pkl' |
|
pred_maps = mmcv.load(osp.join(data_path, yolo_head_data)) |
|
|
|
yolo_model.get_bboxes = partial(yolo_model.get_bboxes, img_metas=img_metas) |
|
wrap_model = WrapFunction(yolo_model.get_bboxes) |
|
wrap_model.cpu().eval() |
|
with torch.no_grad(): |
|
torch.onnx.export( |
|
wrap_model, |
|
pred_maps, |
|
'tmp.onnx', |
|
export_params=True, |
|
keep_initializers_as_inputs=True, |
|
do_constant_folding=True, |
|
verbose=False, |
|
opset_version=11) |
|
|
|
onnx_outputs = verify_model(pred_maps) |
|
|
|
torch_outputs = convert_result_list(wrap_model.forward(pred_maps)) |
|
torch_outputs = [ |
|
torch_output.detach().numpy() for torch_output in torch_outputs |
|
] |
|
|
|
|
|
for i in range(len(onnx_outputs)): |
|
np.testing.assert_allclose( |
|
torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05) |
|
|