File size: 6,848 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os.path as osp
from functools import partial

import mmcv
import numpy as np
import pytest
import torch

from mmdet import digit_version
from mmdet.models.dense_heads import RetinaHead, YOLOV3Head
from .utils import (WrapFunction, convert_result_list, ort_validate,
                    verify_model)

data_path = osp.join(osp.dirname(__file__), 'data')

if digit_version(torch.__version__) <= digit_version('1.5.0'):
    pytest.skip(
        'ort backend does not support version below 1.5.0',
        allow_module_level=True)


def retinanet_config():
    """RetinanNet Head Config."""

    head_cfg = dict(
        stacked_convs=6,
        feat_channels=2,
        anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=4,
            scales_per_octave=3,
            ratios=[0.5, 1.0, 2.0],
            strides=[8, 16, 32, 64, 128]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]))

    test_cfg = mmcv.Config(
        dict(
            deploy_nms_pre=1000,
            min_bbox_size=0,
            score_thr=0.05,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100))

    model = RetinaHead(
        num_classes=4, in_channels=1, test_cfg=test_cfg, **head_cfg)
    model.requires_grad_(False)
    model.eval()

    return model


def test_retina_head_forward_single():
    """Test RetinaNet Head single forward in torch and onnxruntime env."""

    retina_model = retinanet_config()

    feat = torch.rand(1, retina_model.in_channels, 32, 32)
    wrap_model = WrapFunction(retina_model.forward_single)
    ort_validate(wrap_model, feat)


def test_retina_head_forward():
    """Test RetinaNet Head forward in torch and onnxruntime env."""

    retina_model = retinanet_config()
    s = 128

    # RetinaNet head expects a multiple levels of features per image
    feats = [
        torch.rand(1, retina_model.in_channels, s // (2**(i + 2)),
                   s // (2**(i + 2)))  # [32, 16, 8, 4, 2]
        for i in range(len(retina_model.anchor_generator.strides))
    ]

    wrap_model = WrapFunction(retina_model.forward)
    ort_validate(wrap_model, feats)


def test_retinanet_head_get_bboxes():
    """Test RetinaNet Head _get_bboxes() in torch and onnxruntime env."""

    retina_model = retinanet_config()
    s = 128
    img_metas = [{
        'img_shape_for_onnx': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3),
        'img_shape': (s, s, 2)
    }]

    # The data of retina_head_get_bboxes.pkl contains two parts:
    # cls_score(list(Tensor)) and bboxes(list(Tensor)),
    # where each torch.Tensor is generated by torch.rand().
    # the cls_score's size: (1, 36, 32, 32), (1, 36, 16, 16),
    # (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2).
    # the bboxes's size: (1, 36, 32, 32), (1, 36, 16, 16),
    # (1, 36, 8, 8), (1, 36, 4, 4), (1, 36, 2, 2)
    retina_head_data = 'retina_head_get_bboxes.pkl'
    feats = mmcv.load(osp.join(data_path, retina_head_data))
    cls_score = feats[:5]
    bboxes = feats[5:]

    retina_model.get_bboxes = partial(
        retina_model.get_bboxes, img_metas=img_metas)
    wrap_model = WrapFunction(retina_model.get_bboxes)
    wrap_model.cpu().eval()
    with torch.no_grad():
        torch.onnx.export(
            wrap_model, (cls_score, bboxes),
            'tmp.onnx',
            export_params=True,
            keep_initializers_as_inputs=True,
            do_constant_folding=True,
            verbose=False,
            opset_version=11)

    onnx_outputs = verify_model(cls_score + bboxes)

    torch_outputs = wrap_model.forward(cls_score, bboxes)
    torch_outputs = convert_result_list(torch_outputs)
    torch_outputs = [
        torch_output.detach().numpy() for torch_output in torch_outputs
    ]

    # match torch_outputs and onnx_outputs
    for i in range(len(onnx_outputs)):
        np.testing.assert_allclose(
            torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05)


def yolo_config():
    """YoloV3 Head Config."""

    head_cfg = dict(
        anchor_generator=dict(
            type='YOLOAnchorGenerator',
            base_sizes=[[(116, 90), (156, 198), (373, 326)],
                        [(30, 61), (62, 45), (59, 119)],
                        [(10, 13), (16, 30), (33, 23)]],
            strides=[32, 16, 8]),
        bbox_coder=dict(type='YOLOBBoxCoder'))

    test_cfg = mmcv.Config(
        dict(
            deploy_nms_pre=1000,
            min_bbox_size=0,
            score_thr=0.05,
            conf_thr=0.005,
            nms=dict(type='nms', iou_threshold=0.45),
            max_per_img=100))

    model = YOLOV3Head(
        num_classes=4,
        in_channels=[1, 1, 1],
        out_channels=[16, 8, 4],
        test_cfg=test_cfg,
        **head_cfg)
    model.requires_grad_(False)
    model.eval()

    return model


def test_yolov3_head_forward():
    """Test Yolov3 head forward() in torch and ort env."""

    yolo_model = yolo_config()

    # Yolov3 head expects a multiple levels of features per image
    feats = [
        torch.rand(1, 1, 64 // (2**(i + 2)), 64 // (2**(i + 2)))
        for i in range(len(yolo_model.in_channels))
    ]

    wrap_model = WrapFunction(yolo_model.forward)
    ort_validate(wrap_model, feats)


def test_yolov3_head_get_bboxes():
    """Test yolov3 head get_bboxes() in torch and ort env."""

    yolo_model = yolo_config()

    s = 128
    img_metas = [{
        'img_shape_for_onnx': (s, s, 3),
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3)
    }]

    # The data of yolov3_head_get_bboxes.pkl contains
    # a list of torch.Tensor, where each torch.Tensor
    # is generated by torch.rand and each tensor size is:
    # (1, 27, 32, 32), (1, 27, 16, 16), (1, 27, 8, 8).
    yolo_head_data = 'yolov3_head_get_bboxes.pkl'
    pred_maps = mmcv.load(osp.join(data_path, yolo_head_data))

    yolo_model.get_bboxes = partial(yolo_model.get_bboxes, img_metas=img_metas)
    wrap_model = WrapFunction(yolo_model.get_bboxes)
    wrap_model.cpu().eval()
    with torch.no_grad():
        torch.onnx.export(
            wrap_model,
            pred_maps,
            'tmp.onnx',
            export_params=True,
            keep_initializers_as_inputs=True,
            do_constant_folding=True,
            verbose=False,
            opset_version=11)

    onnx_outputs = verify_model(pred_maps)

    torch_outputs = convert_result_list(wrap_model.forward(pred_maps))
    torch_outputs = [
        torch_output.detach().numpy() for torch_output in torch_outputs
    ]

    # match torch_outputs and onnx_outputs
    for i in range(len(onnx_outputs)):
        np.testing.assert_allclose(
            torch_outputs[i], onnx_outputs[i], rtol=1e-03, atol=1e-05)