ZJF-Thunder commited on
Commit
e26e560
·
1 Parent(s): bf05784

添加文件

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .dev_scripts/batch_test.py +212 -0
  2. .dev_scripts/batch_test.sh +19 -0
  3. .dev_scripts/benchmark_filter.py +158 -0
  4. .dev_scripts/convert_benchmark_script.py +86 -0
  5. .dev_scripts/gather_benchmark_metric.py +142 -0
  6. .dev_scripts/gather_models.py +162 -0
  7. .dev_scripts/linter.sh +3 -0
  8. .gitattributes +2 -1
  9. .github/CODE_OF_CONDUCT.md +76 -0
  10. .github/CONTRIBUTING.md +1 -0
  11. .github/ISSUE_TEMPLATE/config.yml +9 -0
  12. .github/ISSUE_TEMPLATE/error-report.md +47 -0
  13. .github/ISSUE_TEMPLATE/feature_request.md +22 -0
  14. .github/ISSUE_TEMPLATE/general_questions.md +8 -0
  15. .github/ISSUE_TEMPLATE/reimplementation_questions.md +68 -0
  16. .github/workflows/build.yml +142 -0
  17. .github/workflows/build_pat.yml +24 -0
  18. .github/workflows/deploy.yml +24 -0
  19. .pre-commit-config.yaml +40 -0
  20. .readthedocs.yml +7 -0
  21. LICENSE +220 -0
  22. configs/_base_/datasets/cityscapes_detection.py +55 -0
  23. configs/_base_/datasets/cityscapes_instance.py +55 -0
  24. configs/_base_/datasets/coco_detection.py +56 -0
  25. configs/_base_/datasets/coco_instance.py +50 -0
  26. configs/_base_/datasets/coco_instance_semantic.py +53 -0
  27. configs/_base_/datasets/deepfashion.py +53 -0
  28. configs/_base_/datasets/lvis_v0.5_instance.py +23 -0
  29. configs/_base_/datasets/lvis_v1_instance.py +23 -0
  30. configs/_base_/datasets/voc0712.py +55 -0
  31. configs/_base_/datasets/wider_face.py +63 -0
  32. configs/_base_/default_runtime.py +29 -0
  33. configs/_base_/models/cascade_mask_rcnn_r50_fpn.py +196 -0
  34. configs/_base_/models/cascade_mask_rcnn_swin_fpn.py +207 -0
  35. configs/_base_/models/cascade_rcnn_r50_fpn.py +179 -0
  36. configs/_base_/models/fast_rcnn_r50_fpn.py +62 -0
  37. configs/_base_/models/faster_rcnn_r50_caffe_c4.py +112 -0
  38. configs/_base_/models/faster_rcnn_r50_caffe_dc5.py +103 -0
  39. configs/_base_/models/faster_rcnn_r50_fpn.py +107 -0
  40. configs/_base_/models/mask_rcnn_r50_caffe_c4.py +123 -0
  41. configs/_base_/models/mask_rcnn_r50_fpn.py +120 -0
  42. configs/_base_/models/mask_rcnn_swin_fpn.py +136 -0
  43. configs/_base_/models/mask_reppointsv2_swin_bifpn.py +124 -0
  44. configs/_base_/models/reppointsv2_swin_bifpn.py +91 -0
  45. configs/_base_/models/retinanet_r50_fpn.py +60 -0
  46. configs/_base_/models/rpn_r50_caffe_c4.py +56 -0
  47. configs/_base_/models/rpn_r50_fpn.py +59 -0
  48. configs/_base_/models/ssd300.py +50 -0
  49. configs/_base_/schedules/schedule_1x.py +11 -0
  50. configs/_base_/schedules/schedule_20e.py +11 -0
.dev_scripts/batch_test.py ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ some instructions
3
+ 1. Fill the models that needs to be checked in the modelzoo_dict
4
+ 2. Arange the structure of the directory as follows, the script will find the
5
+ corresponding config itself:
6
+ model_dir/model_family/checkpoints
7
+ e.g.: models/faster_rcnn/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
8
+ models/faster_rcnn/faster_rcnn_r101_fpn_1x_coco_20200130-047c8118.pth
9
+ 3. Excute the batch_test.sh
10
+ """
11
+
12
+ import argparse
13
+ import json
14
+ import os
15
+ import subprocess
16
+
17
+ import mmcv
18
+ import torch
19
+ from mmcv import Config, get_logger
20
+ from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
21
+ from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
22
+ wrap_fp16_model)
23
+
24
+ from mmdet.apis import multi_gpu_test, single_gpu_test
25
+ from mmdet.datasets import (build_dataloader, build_dataset,
26
+ replace_ImageToTensor)
27
+ from mmdet.models import build_detector
28
+
29
+ modelzoo_dict = {
30
+ 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py': {
31
+ 'bbox': 0.374
32
+ },
33
+ 'configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py': {
34
+ 'bbox': 0.382,
35
+ 'segm': 0.347
36
+ },
37
+ 'configs/rpn/rpn_r50_fpn_1x_coco.py': {
38
+ 'AR@1000': 0.582
39
+ }
40
+ }
41
+
42
+
43
+ def parse_args():
44
+ parser = argparse.ArgumentParser(
45
+ description='The script used for checking the correctness \
46
+ of batch inference')
47
+ parser.add_argument('model_dir', help='directory of models')
48
+ parser.add_argument(
49
+ 'json_out', help='the output json records test information like mAP')
50
+ parser.add_argument(
51
+ '--launcher',
52
+ choices=['none', 'pytorch', 'slurm', 'mpi'],
53
+ default='none',
54
+ help='job launcher')
55
+ parser.add_argument('--local_rank', type=int, default=0)
56
+ args = parser.parse_args()
57
+ if 'LOCAL_RANK' not in os.environ:
58
+ os.environ['LOCAL_RANK'] = str(args.local_rank)
59
+ return args
60
+
61
+
62
+ def check_finish(all_model_dict, result_file):
63
+ # check if all models are checked
64
+ tested_cfgs = []
65
+ with open(result_file, 'r+') as f:
66
+ for line in f:
67
+ line = json.loads(line)
68
+ tested_cfgs.append(line['cfg'])
69
+ is_finish = True
70
+ for cfg in sorted(all_model_dict.keys()):
71
+ if cfg not in tested_cfgs:
72
+ return cfg
73
+ if is_finish:
74
+ with open(result_file, 'a+') as f:
75
+ f.write('finished\n')
76
+
77
+
78
+ def dump_dict(record_dict, json_out):
79
+ # dump result json dict
80
+ with open(json_out, 'a+') as f:
81
+ mmcv.dump(record_dict, f, file_format='json')
82
+ f.write('\n')
83
+
84
+
85
+ def main():
86
+ args = parse_args()
87
+ # touch the output json if not exist
88
+ with open(args.json_out, 'a+'):
89
+ pass
90
+ # init distributed env first, since logger depends on the dist
91
+ # info.
92
+ if args.launcher == 'none':
93
+ distributed = False
94
+ else:
95
+ distributed = True
96
+ init_dist(args.launcher, backend='nccl')
97
+ rank, world_size = get_dist_info()
98
+
99
+ logger = get_logger('root')
100
+
101
+ # read info of checkpoints and config
102
+ result_dict = dict()
103
+ for model_family_dir in os.listdir(args.model_dir):
104
+ for model in os.listdir(
105
+ os.path.join(args.model_dir, model_family_dir)):
106
+ # cpt: rpn_r50_fpn_1x_coco_20200218-5525fa2e.pth
107
+ # cfg: rpn_r50_fpn_1x_coco.py
108
+ cfg = model.split('.')[0][:-18] + '.py'
109
+ cfg_path = os.path.join('configs', model_family_dir, cfg)
110
+ assert os.path.isfile(
111
+ cfg_path), f'{cfg_path} is not valid config path'
112
+ cpt_path = os.path.join(args.model_dir, model_family_dir, model)
113
+ result_dict[cfg_path] = cpt_path
114
+ assert cfg_path in modelzoo_dict, f'please fill the ' \
115
+ f'performance of cfg: {cfg_path}'
116
+ cfg = check_finish(result_dict, args.json_out)
117
+ cpt = result_dict[cfg]
118
+ try:
119
+ cfg_name = cfg
120
+ logger.info(f'evaluate {cfg}')
121
+ record = dict(cfg=cfg, cpt=cpt)
122
+ cfg = Config.fromfile(cfg)
123
+ # cfg.data.test.ann_file = 'data/val_0_10.json'
124
+ # set cudnn_benchmark
125
+ if cfg.get('cudnn_benchmark', False):
126
+ torch.backends.cudnn.benchmark = True
127
+ cfg.model.pretrained = None
128
+ if cfg.model.get('neck'):
129
+ if isinstance(cfg.model.neck, list):
130
+ for neck_cfg in cfg.model.neck:
131
+ if neck_cfg.get('rfp_backbone'):
132
+ if neck_cfg.rfp_backbone.get('pretrained'):
133
+ neck_cfg.rfp_backbone.pretrained = None
134
+ elif cfg.model.neck.get('rfp_backbone'):
135
+ if cfg.model.neck.rfp_backbone.get('pretrained'):
136
+ cfg.model.neck.rfp_backbone.pretrained = None
137
+
138
+ # in case the test dataset is concatenated
139
+ if isinstance(cfg.data.test, dict):
140
+ cfg.data.test.test_mode = True
141
+ elif isinstance(cfg.data.test, list):
142
+ for ds_cfg in cfg.data.test:
143
+ ds_cfg.test_mode = True
144
+
145
+ # build the dataloader
146
+ samples_per_gpu = 2 # hack test with 2 image per gpu
147
+ if samples_per_gpu > 1:
148
+ # Replace 'ImageToTensor' to 'DefaultFormatBundle'
149
+ cfg.data.test.pipeline = replace_ImageToTensor(
150
+ cfg.data.test.pipeline)
151
+ dataset = build_dataset(cfg.data.test)
152
+ data_loader = build_dataloader(
153
+ dataset,
154
+ samples_per_gpu=samples_per_gpu,
155
+ workers_per_gpu=cfg.data.workers_per_gpu,
156
+ dist=distributed,
157
+ shuffle=False)
158
+
159
+ # build the model and load checkpoint
160
+ cfg.model.train_cfg = None
161
+ model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
162
+ fp16_cfg = cfg.get('fp16', None)
163
+ if fp16_cfg is not None:
164
+ wrap_fp16_model(model)
165
+
166
+ checkpoint = load_checkpoint(model, cpt, map_location='cpu')
167
+ # old versions did not save class info in checkpoints,
168
+ # this walkaround is for backward compatibility
169
+ if 'CLASSES' in checkpoint.get('meta', {}):
170
+ model.CLASSES = checkpoint['meta']['CLASSES']
171
+ else:
172
+ model.CLASSES = dataset.CLASSES
173
+
174
+ if not distributed:
175
+ model = MMDataParallel(model, device_ids=[0])
176
+ outputs = single_gpu_test(model, data_loader)
177
+ else:
178
+ model = MMDistributedDataParallel(
179
+ model.cuda(),
180
+ device_ids=[torch.cuda.current_device()],
181
+ broadcast_buffers=False)
182
+ outputs = multi_gpu_test(model, data_loader, 'tmp')
183
+ if rank == 0:
184
+ ref_mAP_dict = modelzoo_dict[cfg_name]
185
+ metrics = list(ref_mAP_dict.keys())
186
+ metrics = [
187
+ m if m != 'AR@1000' else 'proposal_fast' for m in metrics
188
+ ]
189
+ eval_results = dataset.evaluate(outputs, metrics)
190
+ print(eval_results)
191
+ for metric in metrics:
192
+ if metric == 'proposal_fast':
193
+ ref_metric = modelzoo_dict[cfg_name]['AR@1000']
194
+ eval_metric = eval_results['AR@1000']
195
+ else:
196
+ ref_metric = modelzoo_dict[cfg_name][metric]
197
+ eval_metric = eval_results[f'{metric}_mAP']
198
+ if abs(ref_metric - eval_metric) > 0.003:
199
+ record['is_normal'] = False
200
+ dump_dict(record, args.json_out)
201
+ check_finish(result_dict, args.json_out)
202
+ except Exception as e:
203
+ logger.error(f'rank: {rank} test fail with error: {e}')
204
+ record['terminate'] = True
205
+ dump_dict(record, args.json_out)
206
+ check_finish(result_dict, args.json_out)
207
+ # hack there to throw some error to prevent hang out
208
+ subprocess.call('xxx')
209
+
210
+
211
+ if __name__ == '__main__':
212
+ main()
.dev_scripts/batch_test.sh ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export PYTHONPATH=${PWD}
2
+
3
+ partition=$1
4
+ model_dir=$2
5
+ json_out=$3
6
+ job_name=batch_test
7
+ gpus=8
8
+ gpu_per_node=8
9
+
10
+ touch $json_out
11
+ lastLine=$(tail -n 1 $json_out)
12
+ while [ "$lastLine" != "finished" ]
13
+ do
14
+ srun -p ${partition} --gres=gpu:${gpu_per_node} -n${gpus} --ntasks-per-node=${gpu_per_node} \
15
+ --job-name=${job_name} --kill-on-bad-exit=1 \
16
+ python .dev_scripts/batch_test.py $model_dir $json_out --launcher='slurm'
17
+ lastLine=$(tail -n 1 $json_out)
18
+ echo $lastLine
19
+ done
.dev_scripts/benchmark_filter.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import os.path as osp
4
+
5
+ import mmcv
6
+
7
+
8
+ def parse_args():
9
+ parser = argparse.ArgumentParser(description='Filter configs to train')
10
+ parser.add_argument(
11
+ '--basic-arch',
12
+ action='store_true',
13
+ help='to train models in basic arch')
14
+ parser.add_argument(
15
+ '--datasets', action='store_true', help='to train models in dataset')
16
+ parser.add_argument(
17
+ '--data-pipeline',
18
+ action='store_true',
19
+ help='to train models related to data pipeline, e.g. augmentations')
20
+ parser.add_argument(
21
+ '--nn-module',
22
+ action='store_true',
23
+ help='to train models related to neural network modules')
24
+ parser.add_argument(
25
+ '--model-options',
26
+ nargs='+',
27
+ help='custom options to special model benchmark')
28
+
29
+ args = parser.parse_args()
30
+ return args
31
+
32
+
33
+ basic_arch_root = [
34
+ 'atss', 'cascade_rcnn', 'cascade_rpn', 'centripetalnet', 'cornernet',
35
+ 'detectors', 'detr', 'double_heads', 'dynamic_rcnn', 'faster_rcnn', 'fcos',
36
+ 'foveabox', 'fp16', 'free_anchor', 'fsaf', 'gfl', 'ghm', 'grid_rcnn',
37
+ 'guided_anchoring', 'htc', 'libra_rcnn', 'mask_rcnn', 'ms_rcnn',
38
+ 'nas_fcos', 'paa', 'pisa', 'point_rend', 'reppoints', 'retinanet', 'rpn',
39
+ 'sabl', 'ssd', 'tridentnet', 'vfnet', 'yolact', 'yolo', 'sparse_rcnn',
40
+ 'scnet'
41
+ ]
42
+
43
+ datasets_root = [
44
+ 'wider_face', 'pascal_voc', 'cityscapes', 'lvis', 'deepfashion'
45
+ ]
46
+
47
+ data_pipeline_root = ['albu_example', 'instaboost']
48
+
49
+ nn_module_root = [
50
+ 'carafe', 'dcn', 'empirical_attention', 'gcnet', 'gn', 'gn+ws', 'hrnet',
51
+ 'pafpn', 'nas_fpn', 'regnet', 'resnest', 'res2net', 'groie'
52
+ ]
53
+
54
+ benchmark_pool = [
55
+ 'configs/albu_example/mask_rcnn_r50_fpn_albu_1x_coco.py',
56
+ 'configs/atss/atss_r50_fpn_1x_coco.py',
57
+ 'configs/carafe/mask_rcnn_r50_fpn_carafe_1x_coco.py',
58
+ 'configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py',
59
+ 'configs/cascade_rpn/crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py',
60
+ 'configs/centripetalnet/'
61
+ 'centripetalnet_hourglass104_mstest_16x6_210e_coco.py',
62
+ 'configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py',
63
+ 'configs/cornernet/'
64
+ 'cornernet_hourglass104_mstest_8x6_210e_coco.py', # special
65
+ 'configs/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py',
66
+ 'configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py',
67
+ 'configs/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco.py',
68
+ 'configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py',
69
+ 'configs/detectors/detectors_htc_r50_1x_coco.py',
70
+ 'configs/detr/detr_r50_8x2_150e_coco.py',
71
+ 'configs/double_heads/dh_faster_rcnn_r50_fpn_1x_coco.py',
72
+ 'configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py',
73
+ 'configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py', # noqa
74
+ 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',
75
+ 'configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py',
76
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py',
77
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py',
78
+ 'configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py',
79
+ 'configs/fcos/fcos_center_r50_caffe_fpn_gn-head_4x4_1x_coco.py',
80
+ 'configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py',
81
+ 'configs/fp16/retinanet_r50_fpn_fp16_1x_coco.py',
82
+ 'configs/fp16/mask_rcnn_r50_fpn_fp16_1x_coco.py',
83
+ 'configs/free_anchor/retinanet_free_anchor_r50_fpn_1x_coco.py',
84
+ 'configs/fsaf/fsaf_r50_fpn_1x_coco.py',
85
+ 'configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py',
86
+ 'configs/gfl/gfl_r50_fpn_1x_coco.py',
87
+ 'configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py',
88
+ 'configs/gn/mask_rcnn_r50_fpn_gn-all_2x_coco.py',
89
+ 'configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py',
90
+ 'configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_2x_coco.py',
91
+ 'configs/groie/faster_rcnn_r50_fpn_groie_1x_coco.py',
92
+ 'configs/guided_anchoring/ga_faster_r50_caffe_fpn_1x_coco.py',
93
+ 'configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py',
94
+ 'configs/htc/htc_r50_fpn_1x_coco.py',
95
+ 'configs/instaboost/mask_rcnn_r50_fpn_instaboost_4x_coco.py',
96
+ 'configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py',
97
+ 'configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py',
98
+ 'configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py',
99
+ 'configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py',
100
+ 'configs/nas_fcos/nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py',
101
+ 'configs/nas_fpn/retinanet_r50_nasfpn_crop640_50e_coco.py',
102
+ 'configs/paa/paa_r50_fpn_1x_coco.py',
103
+ 'configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py',
104
+ 'configs/pisa/pisa_mask_rcnn_r50_fpn_1x_coco.py',
105
+ 'configs/point_rend/point_rend_r50_caffe_fpn_mstrain_1x_coco.py',
106
+ 'configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py',
107
+ 'configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py',
108
+ 'configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py',
109
+ 'configs/resnest/'
110
+ 'mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py',
111
+ 'configs/retinanet/retinanet_r50_caffe_fpn_1x_coco.py',
112
+ 'configs/rpn/rpn_r50_fpn_1x_coco.py',
113
+ 'configs/sabl/sabl_retinanet_r50_fpn_1x_coco.py',
114
+ 'configs/ssd/ssd300_coco.py',
115
+ 'configs/tridentnet/tridentnet_r50_caffe_1x_coco.py',
116
+ 'configs/vfnet/vfnet_r50_fpn_1x_coco.py',
117
+ 'configs/yolact/yolact_r50_1x8_coco.py',
118
+ 'configs/yolo/yolov3_d53_320_273e_coco.py',
119
+ 'configs/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco.py',
120
+ 'configs/scnet/scnet_r50_fpn_1x_coco.py'
121
+ ]
122
+
123
+
124
+ def main():
125
+ args = parse_args()
126
+
127
+ benchmark_type = []
128
+ if args.basic_arch:
129
+ benchmark_type += basic_arch_root
130
+ if args.datasets:
131
+ benchmark_type += datasets_root
132
+ if args.data_pipeline:
133
+ benchmark_type += data_pipeline_root
134
+ if args.nn_module:
135
+ benchmark_type += nn_module_root
136
+
137
+ special_model = args.model_options
138
+ if special_model is not None:
139
+ benchmark_type += special_model
140
+
141
+ config_dpath = 'configs/'
142
+ benchmark_configs = []
143
+ for cfg_root in benchmark_type:
144
+ cfg_dir = osp.join(config_dpath, cfg_root)
145
+ configs = os.scandir(cfg_dir)
146
+ for cfg in configs:
147
+ config_path = osp.join(cfg_dir, cfg.name)
148
+ if (config_path in benchmark_pool
149
+ and config_path not in benchmark_configs):
150
+ benchmark_configs.append(config_path)
151
+
152
+ print(f'Totally found {len(benchmark_configs)} configs to benchmark')
153
+ config_dicts = dict(models=benchmark_configs)
154
+ mmcv.dump(config_dicts, 'regression_test_configs.json')
155
+
156
+
157
+ if __name__ == '__main__':
158
+ main()
.dev_scripts/convert_benchmark_script.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import os.path as osp
4
+
5
+ import mmcv
6
+
7
+
8
+ def parse_args():
9
+ parser = argparse.ArgumentParser(
10
+ description='Convert benchmark model json to script')
11
+ parser.add_argument(
12
+ 'json_path', type=str, help='json path output by benchmark_filter')
13
+ parser.add_argument('partition', type=str, help='slurm partition name')
14
+ parser.add_argument(
15
+ '--max-keep-ckpts',
16
+ type=int,
17
+ default=1,
18
+ help='The maximum checkpoints to keep')
19
+ parser.add_argument(
20
+ '--run', action='store_true', help='run script directly')
21
+ parser.add_argument(
22
+ '--out', type=str, help='path to save model benchmark script')
23
+
24
+ args = parser.parse_args()
25
+ return args
26
+
27
+
28
+ def main():
29
+ args = parse_args()
30
+ if args.out:
31
+ out_suffix = args.out.split('.')[-1]
32
+ assert args.out.endswith('.sh'), \
33
+ f'Expected out file path suffix is .sh, but get .{out_suffix}'
34
+ assert args.out or args.run, \
35
+ ('Please specify at least one operation (save/run/ the '
36
+ 'script) with the argument "--out" or "--run"')
37
+
38
+ json_data = mmcv.load(args.json_path)
39
+ model_cfgs = json_data['models']
40
+
41
+ partition = args.partition # cluster name
42
+
43
+ root_name = './tools'
44
+ train_script_name = osp.join(root_name, 'slurm_train.sh')
45
+ # stdout is no output
46
+ stdout_cfg = '>/dev/null'
47
+
48
+ max_keep_ckpts = args.max_keep_ckpts
49
+
50
+ commands = []
51
+ for i, cfg in enumerate(model_cfgs):
52
+ # print cfg name
53
+ echo_info = f'echo \'{cfg}\' &'
54
+ commands.append(echo_info)
55
+ commands.append('\n')
56
+
57
+ fname, _ = osp.splitext(osp.basename(cfg))
58
+ out_fname = osp.join(root_name, fname)
59
+ # default setting
60
+ command_info = f'GPUS=8 GPUS_PER_NODE=8 ' \
61
+ f'CPUS_PER_TASK=2 {train_script_name} '
62
+ command_info += f'{partition} '
63
+ command_info += f'{fname} '
64
+ command_info += f'{cfg} '
65
+ command_info += f'{out_fname} '
66
+ if max_keep_ckpts:
67
+ command_info += f'--cfg-options ' \
68
+ f'checkpoint_config.max_keep_ckpts=' \
69
+ f'{max_keep_ckpts}' + ' '
70
+ command_info += f'{stdout_cfg} &'
71
+
72
+ commands.append(command_info)
73
+
74
+ if i < len(model_cfgs):
75
+ commands.append('\n')
76
+
77
+ command_str = ''.join(commands)
78
+ if args.out:
79
+ with open(args.out, 'w') as f:
80
+ f.write(command_str)
81
+ if args.run:
82
+ os.system(command_str)
83
+
84
+
85
+ if __name__ == '__main__':
86
+ main()
.dev_scripts/gather_benchmark_metric.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import os.path as osp
4
+
5
+ import mmcv
6
+ from gather_models import get_final_results
7
+
8
+ try:
9
+ import xlrd
10
+ except ImportError:
11
+ xlrd = None
12
+ try:
13
+ import xlutils
14
+ from xlutils.copy import copy
15
+ except ImportError:
16
+ xlutils = None
17
+
18
+
19
+ def parse_args():
20
+ parser = argparse.ArgumentParser(
21
+ description='Gather benchmarked models metric')
22
+ parser.add_argument(
23
+ 'root',
24
+ type=str,
25
+ help='root path of benchmarked models to be gathered')
26
+ parser.add_argument(
27
+ 'benchmark_json', type=str, help='json path of benchmark models')
28
+ parser.add_argument(
29
+ '--out', type=str, help='output path of gathered metrics to be stored')
30
+ parser.add_argument(
31
+ '--not-show', action='store_true', help='not show metrics')
32
+ parser.add_argument(
33
+ '--excel', type=str, help='input path of excel to be recorded')
34
+ parser.add_argument(
35
+ '--ncol', type=int, help='Number of column to be modified or appended')
36
+
37
+ args = parser.parse_args()
38
+ return args
39
+
40
+
41
+ if __name__ == '__main__':
42
+ args = parse_args()
43
+
44
+ if args.excel:
45
+ assert args.ncol, 'Please specify "--excel" and "--ncol" ' \
46
+ 'at the same time'
47
+ if xlrd is None:
48
+ raise RuntimeError(
49
+ 'xlrd is not installed,'
50
+ 'Please use “pip install xlrd==1.2.0” to install')
51
+ if xlutils is None:
52
+ raise RuntimeError(
53
+ 'xlutils is not installed,'
54
+ 'Please use “pip install xlutils==2.0.0” to install')
55
+ readbook = xlrd.open_workbook(args.excel)
56
+ sheet = readbook.sheet_by_name('Sheet1')
57
+ sheet_info = {}
58
+ total_nrows = sheet.nrows
59
+ for i in range(3, sheet.nrows):
60
+ sheet_info[sheet.row_values(i)[0]] = i
61
+ xlrw = copy(readbook)
62
+ table = xlrw.get_sheet(0)
63
+
64
+ root_path = args.root
65
+ metrics_out = args.out
66
+ benchmark_json_path = args.benchmark_json
67
+ model_configs = mmcv.load(benchmark_json_path)['models']
68
+
69
+ result_dict = {}
70
+ for config in model_configs:
71
+ config_name = osp.split(config)[-1]
72
+ config_name = osp.splitext(config_name)[0]
73
+ result_path = osp.join(root_path, config_name)
74
+ if osp.exists(result_path):
75
+ # 1 read config
76
+ cfg = mmcv.Config.fromfile(config)
77
+ total_epochs = cfg.runner.max_epochs
78
+ final_results = cfg.evaluation.metric
79
+ if not isinstance(final_results, list):
80
+ final_results = [final_results]
81
+ final_results_out = []
82
+ for key in final_results:
83
+ if 'proposal_fast' in key:
84
+ final_results_out.append('AR@1000') # RPN
85
+ elif 'mAP' not in key:
86
+ final_results_out.append(key + '_mAP')
87
+
88
+ # 2 determine whether total_epochs ckpt exists
89
+ ckpt_path = f'epoch_{total_epochs}.pth'
90
+ if osp.exists(osp.join(result_path, ckpt_path)):
91
+ log_json_path = list(
92
+ sorted(glob.glob(osp.join(result_path, '*.log.json'))))[-1]
93
+
94
+ # 3 read metric
95
+ model_performance = get_final_results(log_json_path,
96
+ total_epochs,
97
+ final_results_out)
98
+ if model_performance is None:
99
+ print(f'log file error: {log_json_path}')
100
+ continue
101
+ for performance in model_performance:
102
+ if performance in ['AR@1000', 'bbox_mAP', 'segm_mAP']:
103
+ metric = round(model_performance[performance] * 100, 1)
104
+ model_performance[performance] = metric
105
+ result_dict[config] = model_performance
106
+
107
+ # update and append excel content
108
+ if args.excel:
109
+ if 'AR@1000' in model_performance:
110
+ metrics = f'{model_performance["AR@1000"]}(AR@1000)'
111
+ elif 'segm_mAP' in model_performance:
112
+ metrics = f'{model_performance["bbox_mAP"]}/' \
113
+ f'{model_performance["segm_mAP"]}'
114
+ else:
115
+ metrics = f'{model_performance["bbox_mAP"]}'
116
+
117
+ row_num = sheet_info.get(config, None)
118
+ if row_num:
119
+ table.write(row_num, args.ncol, metrics)
120
+ else:
121
+ table.write(total_nrows, 0, config)
122
+ table.write(total_nrows, args.ncol, metrics)
123
+ total_nrows += 1
124
+
125
+ else:
126
+ print(f'{config} not exist: {ckpt_path}')
127
+ else:
128
+ print(f'not exist: {config}')
129
+
130
+ # 4 save or print results
131
+ if metrics_out:
132
+ mmcv.mkdir_or_exist(metrics_out)
133
+ mmcv.dump(result_dict, osp.join(metrics_out, 'model_metric_info.json'))
134
+ if not args.not_show:
135
+ print('===================================')
136
+ for config_name, metrics in result_dict.items():
137
+ print(config_name, metrics)
138
+ print('===================================')
139
+ if args.excel:
140
+ filename, sufflx = osp.splitext(args.excel)
141
+ xlrw.save(f'{filename}_o{sufflx}')
142
+ print(f'>>> Output {filename}_o{sufflx}')
.dev_scripts/gather_models.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import json
4
+ import os.path as osp
5
+ import shutil
6
+ import subprocess
7
+
8
+ import mmcv
9
+ import torch
10
+
11
+
12
+ def process_checkpoint(in_file, out_file):
13
+ checkpoint = torch.load(in_file, map_location='cpu')
14
+ # remove optimizer for smaller file size
15
+ if 'optimizer' in checkpoint:
16
+ del checkpoint['optimizer']
17
+ # if it is necessary to remove some sensitive data in checkpoint['meta'],
18
+ # add the code here.
19
+ torch.save(checkpoint, out_file)
20
+ sha = subprocess.check_output(['sha256sum', out_file]).decode()
21
+ final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
22
+ subprocess.Popen(['mv', out_file, final_file])
23
+ return final_file
24
+
25
+
26
+ def get_final_epoch(config):
27
+ cfg = mmcv.Config.fromfile('./configs/' + config)
28
+ return cfg.total_epochs
29
+
30
+
31
+ def get_final_results(log_json_path, epoch, results_lut):
32
+ result_dict = dict()
33
+ with open(log_json_path, 'r') as f:
34
+ for line in f.readlines():
35
+ log_line = json.loads(line)
36
+ if 'mode' not in log_line.keys():
37
+ continue
38
+
39
+ if log_line['mode'] == 'train' and log_line['epoch'] == epoch:
40
+ result_dict['memory'] = log_line['memory']
41
+
42
+ if log_line['mode'] == 'val' and log_line['epoch'] == epoch:
43
+ result_dict.update({
44
+ key: log_line[key]
45
+ for key in results_lut if key in log_line
46
+ })
47
+ return result_dict
48
+
49
+
50
+ def parse_args():
51
+ parser = argparse.ArgumentParser(description='Gather benchmarked models')
52
+ parser.add_argument(
53
+ 'root',
54
+ type=str,
55
+ help='root path of benchmarked models to be gathered')
56
+ parser.add_argument(
57
+ 'out', type=str, help='output path of gathered models to be stored')
58
+
59
+ args = parser.parse_args()
60
+ return args
61
+
62
+
63
+ def main():
64
+ args = parse_args()
65
+ models_root = args.root
66
+ models_out = args.out
67
+ mmcv.mkdir_or_exist(models_out)
68
+
69
+ # find all models in the root directory to be gathered
70
+ raw_configs = list(mmcv.scandir('./configs', '.py', recursive=True))
71
+
72
+ # filter configs that is not trained in the experiments dir
73
+ used_configs = []
74
+ for raw_config in raw_configs:
75
+ if osp.exists(osp.join(models_root, raw_config)):
76
+ used_configs.append(raw_config)
77
+ print(f'Find {len(used_configs)} models to be gathered')
78
+
79
+ # find final_ckpt and log file for trained each config
80
+ # and parse the best performance
81
+ model_infos = []
82
+ for used_config in used_configs:
83
+ exp_dir = osp.join(models_root, used_config)
84
+ # check whether the exps is finished
85
+ final_epoch = get_final_epoch(used_config)
86
+ final_model = 'epoch_{}.pth'.format(final_epoch)
87
+ model_path = osp.join(exp_dir, final_model)
88
+
89
+ # skip if the model is still training
90
+ if not osp.exists(model_path):
91
+ continue
92
+
93
+ # get the latest logs
94
+ log_json_path = list(
95
+ sorted(glob.glob(osp.join(exp_dir, '*.log.json'))))[-1]
96
+ log_txt_path = list(sorted(glob.glob(osp.join(exp_dir, '*.log'))))[-1]
97
+ cfg = mmcv.Config.fromfile('./configs/' + used_config)
98
+ results_lut = cfg.evaluation.metric
99
+ if not isinstance(results_lut, list):
100
+ results_lut = [results_lut]
101
+ # case when using VOC, the evaluation key is only 'mAP'
102
+ results_lut = [key + '_mAP' for key in results_lut if 'mAP' not in key]
103
+ model_performance = get_final_results(log_json_path, final_epoch,
104
+ results_lut)
105
+
106
+ if model_performance is None:
107
+ continue
108
+
109
+ model_time = osp.split(log_txt_path)[-1].split('.')[0]
110
+ model_infos.append(
111
+ dict(
112
+ config=used_config,
113
+ results=model_performance,
114
+ epochs=final_epoch,
115
+ model_time=model_time,
116
+ log_json_path=osp.split(log_json_path)[-1]))
117
+
118
+ # publish model for each checkpoint
119
+ publish_model_infos = []
120
+ for model in model_infos:
121
+ model_publish_dir = osp.join(models_out, model['config'].rstrip('.py'))
122
+ mmcv.mkdir_or_exist(model_publish_dir)
123
+
124
+ model_name = osp.split(model['config'])[-1].split('.')[0]
125
+
126
+ model_name += '_' + model['model_time']
127
+ publish_model_path = osp.join(model_publish_dir, model_name)
128
+ trained_model_path = osp.join(models_root, model['config'],
129
+ 'epoch_{}.pth'.format(model['epochs']))
130
+
131
+ # convert model
132
+ final_model_path = process_checkpoint(trained_model_path,
133
+ publish_model_path)
134
+
135
+ # copy log
136
+ shutil.copy(
137
+ osp.join(models_root, model['config'], model['log_json_path']),
138
+ osp.join(model_publish_dir, f'{model_name}.log.json'))
139
+ shutil.copy(
140
+ osp.join(models_root, model['config'],
141
+ model['log_json_path'].rstrip('.json')),
142
+ osp.join(model_publish_dir, f'{model_name}.log'))
143
+
144
+ # copy config to guarantee reproducibility
145
+ config_path = model['config']
146
+ config_path = osp.join(
147
+ 'configs',
148
+ config_path) if 'configs' not in config_path else config_path
149
+ target_cconfig_path = osp.split(config_path)[-1]
150
+ shutil.copy(config_path,
151
+ osp.join(model_publish_dir, target_cconfig_path))
152
+
153
+ model['model_path'] = final_model_path
154
+ publish_model_infos.append(model)
155
+
156
+ models = dict(models=publish_model_infos)
157
+ print(f'Totally gathered {len(publish_model_infos)} models')
158
+ mmcv.dump(models, osp.join(models_out, 'model_info.json'))
159
+
160
+
161
+ if __name__ == '__main__':
162
+ main()
.dev_scripts/linter.sh ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ yapf -r -i mmdet/ configs/ tests/ tools/
2
+ isort -rc mmdet/ configs/ tests/ tools/
3
+ flake8 .
.gitattributes CHANGED
@@ -34,4 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  *.gif filter=lfs diff=lfs merge=lfs -text
36
  *.jpg filter=lfs diff=lfs merge=lfs -text
37
- *.png filter=lfs diff=lfs merge=lfs -text
 
 
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
  *.gif filter=lfs diff=lfs merge=lfs -text
36
  *.jpg filter=lfs diff=lfs merge=lfs -text
37
+ *.png filter=lfs diff=lfs merge=lfs -text
38
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
.github/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the project team at [email protected]. All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72
+
73
+ [homepage]: https://www.contributor-covenant.org
74
+
75
+ For answers to common questions about this code of conduct, see
76
+ https://www.contributor-covenant.org/faq
.github/CONTRIBUTING.md ADDED
@@ -0,0 +1 @@
 
 
1
+ We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ blank_issues_enabled: false
2
+
3
+ contact_links:
4
+ - name: Common Issues
5
+ url: https://mmdetection.readthedocs.io/en/latest/faq.html
6
+ about: Check if your issue already has solutions
7
+ - name: MMDetection Documentation
8
+ url: https://mmdetection.readthedocs.io/en/latest/
9
+ about: Check if your question is answered in docs
.github/ISSUE_TEMPLATE/error-report.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Error report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ Thanks for your error report and we appreciate it a lot.
11
+
12
+ **Checklist**
13
+
14
+ 1. I have searched related issues but cannot get the expected help.
15
+ 2. I have read the [FAQ documentation](https://mmdetection.readthedocs.io/en/latest/faq.html) but cannot get the expected help.
16
+ 3. The bug has not been fixed in the latest version.
17
+
18
+ **Describe the bug**
19
+ A clear and concise description of what the bug is.
20
+
21
+ **Reproduction**
22
+
23
+ 1. What command or script did you run?
24
+
25
+ ```none
26
+ A placeholder for the command.
27
+ ```
28
+
29
+ 2. Did you make any modifications on the code or config? Did you understand what you have modified?
30
+ 3. What dataset did you use?
31
+
32
+ **Environment**
33
+
34
+ 1. Please run `python mmdet/utils/collect_env.py` to collect necessary environment information and paste it here.
35
+ 2. You may add addition that may be helpful for locating the problem, such as
36
+ - How you installed PyTorch [e.g., pip, conda, source]
37
+ - Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
38
+
39
+ **Error traceback**
40
+ If applicable, paste the error trackback here.
41
+
42
+ ```none
43
+ A placeholder for trackback.
44
+ ```
45
+
46
+ **Bug fix**
47
+ If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
.github/ISSUE_TEMPLATE/feature_request.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Feature request
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Describe the feature**
11
+
12
+ **Motivation**
13
+ A clear and concise description of the motivation of the feature.
14
+ Ex1. It is inconvenient when [....].
15
+ Ex2. There is a recent paper [....], which is very helpful for [....].
16
+
17
+ **Related resources**
18
+ If there is an official code release or third-party implementations, please also provide the information here, which would be very helpful.
19
+
20
+ **Additional context**
21
+ Add any other context or screenshots about the feature request here.
22
+ If you would like to implement the feature and create a PR, please leave a comment here and that would be much appreciated.
.github/ISSUE_TEMPLATE/general_questions.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: General questions
3
+ about: Ask general questions to get help
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
.github/ISSUE_TEMPLATE/reimplementation_questions.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Reimplementation Questions
3
+ about: Ask about questions during model reimplementation
4
+ title: ''
5
+ labels: 'reimplementation'
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ **Notice**
11
+
12
+ There are several common situations in the reimplementation issues as below
13
+
14
+ 1. Reimplement a model in the model zoo using the provided configs
15
+ 2. Reimplement a model in the model zoo on other dataset (e.g., custom datasets)
16
+ 3. Reimplement a custom model but all the components are implemented in MMDetection
17
+ 4. Reimplement a custom model with new modules implemented by yourself
18
+
19
+ There are several things to do for different cases as below.
20
+
21
+ - For case 1 & 3, please follow the steps in the following sections thus we could help to quick identify the issue.
22
+ - For case 2 & 4, please understand that we are not able to do much help here because we usually do not know the full code and the users should be responsible to the code they write.
23
+ - One suggestion for case 2 & 4 is that the users should first check whether the bug lies in the self-implemented code or the original code. For example, users can first make sure that the same model runs well on supported datasets. If you still need help, please describe what you have done and what you obtain in the issue, and follow the steps in the following sections and try as clear as possible so that we can better help you.
24
+
25
+ **Checklist**
26
+
27
+ 1. I have searched related issues but cannot get the expected help.
28
+ 2. The issue has not been fixed in the latest version.
29
+
30
+ **Describe the issue**
31
+
32
+ A clear and concise description of what the problem you meet and what have you done.
33
+
34
+ **Reproduction**
35
+
36
+ 1. What command or script did you run?
37
+
38
+ ```none
39
+ A placeholder for the command.
40
+ ```
41
+
42
+ 2. What config dir you run?
43
+
44
+ ```none
45
+ A placeholder for the config.
46
+ ```
47
+
48
+ 3. Did you make any modifications on the code or config? Did you understand what you have modified?
49
+ 4. What dataset did you use?
50
+
51
+ **Environment**
52
+
53
+ 1. Please run `python mmdet/utils/collect_env.py` to collect necessary environment information and paste it here.
54
+ 2. You may add addition that may be helpful for locating the problem, such as
55
+ 1. How you installed PyTorch [e.g., pip, conda, source]
56
+ 2. Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
57
+
58
+ **Results**
59
+
60
+ If applicable, paste the related results here, e.g., what you expect and what you get.
61
+
62
+ ```none
63
+ A placeholder for results comparison
64
+ ```
65
+
66
+ **Issue fix**
67
+
68
+ If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
.github/workflows/build.yml ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: build
2
+
3
+ on: [push, pull_request]
4
+
5
+ jobs:
6
+ lint:
7
+ runs-on: ubuntu-latest
8
+ steps:
9
+ - uses: actions/checkout@v2
10
+ - name: Set up Python 3.7
11
+ uses: actions/setup-python@v2
12
+ with:
13
+ python-version: 3.7
14
+ - name: Install pre-commit hook
15
+ run: |
16
+ pip install pre-commit
17
+ pre-commit install
18
+ - name: Linting
19
+ run: pre-commit run --all-files
20
+ - name: Check docstring coverage
21
+ run: |
22
+ pip install interrogate
23
+ interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --ignore-regex "__repr__" --fail-under 80 mmdet
24
+
25
+ build_cpu:
26
+ runs-on: ubuntu-latest
27
+ strategy:
28
+ matrix:
29
+ python-version: [3.7]
30
+ torch: [1.3.1, 1.5.1, 1.6.0]
31
+ include:
32
+ - torch: 1.3.1
33
+ torchvision: 0.4.2
34
+ mmcv: "latest+torch1.3.0+cpu"
35
+ - torch: 1.5.1
36
+ torchvision: 0.6.1
37
+ mmcv: "latest+torch1.5.0+cpu"
38
+ - torch: 1.6.0
39
+ torchvision: 0.7.0
40
+ mmcv: "latest+torch1.6.0+cpu"
41
+ steps:
42
+ - uses: actions/checkout@v2
43
+ - name: Set up Python ${{ matrix.python-version }}
44
+ uses: actions/setup-python@v2
45
+ with:
46
+ python-version: ${{ matrix.python-version }}
47
+ - name: Install Pillow
48
+ run: pip install Pillow==6.2.2
49
+ if: ${{matrix.torchvision == '0.4.2'}}
50
+ - name: Install PyTorch
51
+ run: pip install torch==${{matrix.torch}}+cpu torchvision==${{matrix.torchvision}}+cpu -f https://download.pytorch.org/whl/torch_stable.html
52
+ - name: Install MMCV
53
+ run: |
54
+ pip install mmcv-full==${{matrix.mmcv}} -f https://download.openmmlab.com/mmcv/dist/index.html --use-deprecated=legacy-resolver
55
+ python -c 'import mmcv; print(mmcv.__version__)'
56
+ - name: Install unittest dependencies
57
+ run: pip install -r requirements/tests.txt -r requirements/optional.txt
58
+ - name: Build and install
59
+ run: rm -rf .eggs && pip install -e .
60
+ - name: Run unittests and generate coverage report
61
+ run: |
62
+ coverage run --branch --source mmdet -m pytest tests/
63
+ coverage xml
64
+ coverage report -m
65
+
66
+ build_cuda:
67
+ runs-on: ubuntu-latest
68
+
69
+ env:
70
+ CUDA: 10.1.105-1
71
+ CUDA_SHORT: 10.1
72
+ UBUNTU_VERSION: ubuntu1804
73
+ strategy:
74
+ matrix:
75
+ python-version: [3.7]
76
+ torch: [1.3.1, 1.5.1+cu101, 1.6.0+cu101]
77
+ include:
78
+ - torch: 1.3.1
79
+ torchvision: 0.4.2
80
+ mmcv: "latest+torch1.3.0+cu101"
81
+ - torch: 1.5.1+cu101
82
+ torchvision: 0.6.1+cu101
83
+ mmcv: "latest+torch1.5.0+cu101"
84
+ - torch: 1.6.0+cu101
85
+ torchvision: 0.7.0+cu101
86
+ mmcv: "latest+torch1.6.0+cu101"
87
+ - torch: 1.6.0+cu101
88
+ torchvision: 0.7.0+cu101
89
+ mmcv: "latest+torch1.6.0+cu101"
90
+ python-version: 3.6
91
+ - torch: 1.6.0+cu101
92
+ torchvision: 0.7.0+cu101
93
+ mmcv: "latest+torch1.6.0+cu101"
94
+ python-version: 3.8
95
+
96
+ steps:
97
+ - uses: actions/checkout@v2
98
+ - name: Set up Python ${{ matrix.python-version }}
99
+ uses: actions/setup-python@v2
100
+ with:
101
+ python-version: ${{ matrix.python-version }}
102
+ - name: Install CUDA
103
+ run: |
104
+ export INSTALLER=cuda-repo-${UBUNTU_VERSION}_${CUDA}_amd64.deb
105
+ wget http://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/${INSTALLER}
106
+ sudo dpkg -i ${INSTALLER}
107
+ wget https://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/7fa2af80.pub
108
+ sudo apt-key add 7fa2af80.pub
109
+ sudo apt update -qq
110
+ sudo apt install -y cuda-${CUDA_SHORT/./-} cuda-cufft-dev-${CUDA_SHORT/./-}
111
+ sudo apt clean
112
+ export CUDA_HOME=/usr/local/cuda-${CUDA_SHORT}
113
+ export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${CUDA_HOME}/include:${LD_LIBRARY_PATH}
114
+ export PATH=${CUDA_HOME}/bin:${PATH}
115
+ - name: Install Pillow
116
+ run: pip install Pillow==6.2.2
117
+ if: ${{matrix.torchvision < 0.5}}
118
+ - name: Install PyTorch
119
+ run: pip install torch==${{matrix.torch}} torchvision==${{matrix.torchvision}} -f https://download.pytorch.org/whl/torch_stable.html
120
+ - name: Install mmdet dependencies
121
+ run: |
122
+ pip install mmcv-full==${{matrix.mmcv}} -f https://download.openmmlab.com/mmcv/dist/index.html --use-deprecated=legacy-resolver
123
+ pip install -r requirements.txt
124
+ python -c 'import mmcv; print(mmcv.__version__)'
125
+ - name: Build and install
126
+ run: |
127
+ rm -rf .eggs
128
+ python setup.py check -m -s
129
+ TORCH_CUDA_ARCH_LIST=7.0 pip install .
130
+ - name: Run unittests and generate coverage report
131
+ run: |
132
+ coverage run --branch --source mmdet -m pytest tests/
133
+ coverage xml
134
+ coverage report -m
135
+ - name: Upload coverage to Codecov
136
+ uses: codecov/[email protected]
137
+ with:
138
+ file: ./coverage.xml
139
+ flags: unittests
140
+ env_vars: OS,PYTHON
141
+ name: codecov-umbrella
142
+ fail_ci_if_error: false
.github/workflows/build_pat.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: build_pat
2
+
3
+ on: push
4
+
5
+ jobs:
6
+ build_parrots:
7
+ runs-on: ubuntu-latest
8
+ container:
9
+ image: ghcr.io/sunnyxiaohu/parrots-mmcv:1.2.1
10
+ credentials:
11
+ username: sunnyxiaohu
12
+ password: ${{secrets.CR_PAT}}
13
+
14
+ steps:
15
+ - uses: actions/checkout@v2
16
+ - name: Install mmdet dependencies
17
+ run: |
18
+ git clone https://github.com/open-mmlab/mmcv.git && cd mmcv
19
+ MMCV_WITH_OPS=1 python setup.py install
20
+ cd .. && rm -rf mmcv
21
+ python -c 'import mmcv; print(mmcv.__version__)'
22
+ pip install -r requirements.txt
23
+ - name: Build and install
24
+ run: rm -rf .eggs && pip install -e .
.github/workflows/deploy.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: deploy
2
+
3
+ on: push
4
+
5
+ jobs:
6
+ build-n-publish:
7
+ runs-on: ubuntu-latest
8
+ if: startsWith(github.event.ref, 'refs/tags')
9
+ steps:
10
+ - uses: actions/checkout@v2
11
+ - name: Set up Python 3.7
12
+ uses: actions/setup-python@v2
13
+ with:
14
+ python-version: 3.7
15
+ - name: Install torch
16
+ run: pip install torch
17
+ - name: Install wheel
18
+ run: pip install wheel
19
+ - name: Build MMDetection
20
+ run: python setup.py sdist bdist_wheel
21
+ - name: Publish distribution to PyPI
22
+ run: |
23
+ pip install twine
24
+ twine upload dist/* -u __token__ -p ${{ secrets.pypi_password }}
.pre-commit-config.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://gitlab.com/pycqa/flake8.git
3
+ rev: 3.8.3
4
+ hooks:
5
+ - id: flake8
6
+ - repo: https://github.com/asottile/seed-isort-config
7
+ rev: v2.2.0
8
+ hooks:
9
+ - id: seed-isort-config
10
+ - repo: https://github.com/timothycrosley/isort
11
+ rev: 4.3.21
12
+ hooks:
13
+ - id: isort
14
+ - repo: https://github.com/pre-commit/mirrors-yapf
15
+ rev: v0.30.0
16
+ hooks:
17
+ - id: yapf
18
+ - repo: https://github.com/pre-commit/pre-commit-hooks
19
+ rev: v3.1.0
20
+ hooks:
21
+ - id: trailing-whitespace
22
+ - id: check-yaml
23
+ - id: end-of-file-fixer
24
+ - id: requirements-txt-fixer
25
+ - id: double-quote-string-fixer
26
+ - id: check-merge-conflict
27
+ - id: fix-encoding-pragma
28
+ args: ["--remove"]
29
+ - id: mixed-line-ending
30
+ args: ["--fix=lf"]
31
+ - repo: https://github.com/jumanjihouse/pre-commit-hooks
32
+ rev: 2.1.4
33
+ hooks:
34
+ - id: markdownlint
35
+ args: ["-r", "~MD002,~MD013,~MD024,~MD029,~MD033,~MD034,~MD036"]
36
+ - repo: https://github.com/myint/docformatter
37
+ rev: v1.3.1
38
+ hooks:
39
+ - id: docformatter
40
+ args: ["--in-place", "--wrap-descriptions", "79"]
.readthedocs.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ version: 2
2
+
3
+ python:
4
+ version: 3.7
5
+ install:
6
+ - requirements: requirements/docs.txt
7
+ - requirements: requirements/readthedocs.txt
LICENSE ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2018-2019 Open-MMLab. All rights reserved.
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright 2018-2019 Open-MMLab.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
204
+
205
+
206
+ ======================================================================================
207
+ Swin-Transformer-Object-Detection Subcomponents:
208
+
209
+ The Swin-Transformer-Object-Detection project contains subcomponents with separate
210
+ copyright notices and license terms. Your use of the source code for the these
211
+ subcomponents is subject to the terms and conditions of the following licenses.
212
+
213
+ =======================================================================================
214
+ MIT license
215
+ =======================================================================================
216
+
217
+ The following components are provided under an MIT license.
218
+
219
+ 1. swin_transformer.py - For details, mmdet/models/backbones/swin_transformer.py
220
+ Copyright (c) 2021 Microsoft
configs/_base_/datasets/cityscapes_detection.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_type = 'CityscapesDataset'
2
+ data_root = 'data/cityscapes/'
3
+ img_norm_cfg = dict(
4
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile'),
7
+ dict(type='LoadAnnotations', with_bbox=True),
8
+ dict(
9
+ type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='DefaultFormatBundle'),
14
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
15
+ ]
16
+ test_pipeline = [
17
+ dict(type='LoadImageFromFile'),
18
+ dict(
19
+ type='MultiScaleFlipAug',
20
+ img_scale=(2048, 1024),
21
+ flip=False,
22
+ transforms=[
23
+ dict(type='Resize', keep_ratio=True),
24
+ dict(type='RandomFlip'),
25
+ dict(type='Normalize', **img_norm_cfg),
26
+ dict(type='Pad', size_divisor=32),
27
+ dict(type='ImageToTensor', keys=['img']),
28
+ dict(type='Collect', keys=['img']),
29
+ ])
30
+ ]
31
+ data = dict(
32
+ samples_per_gpu=1,
33
+ workers_per_gpu=2,
34
+ train=dict(
35
+ type='RepeatDataset',
36
+ times=8,
37
+ dataset=dict(
38
+ type=dataset_type,
39
+ ann_file=data_root +
40
+ 'annotations/instancesonly_filtered_gtFine_train.json',
41
+ img_prefix=data_root + 'leftImg8bit/train/',
42
+ pipeline=train_pipeline)),
43
+ val=dict(
44
+ type=dataset_type,
45
+ ann_file=data_root +
46
+ 'annotations/instancesonly_filtered_gtFine_val.json',
47
+ img_prefix=data_root + 'leftImg8bit/val/',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ ann_file=data_root +
52
+ 'annotations/instancesonly_filtered_gtFine_test.json',
53
+ img_prefix=data_root + 'leftImg8bit/test/',
54
+ pipeline=test_pipeline))
55
+ evaluation = dict(interval=1, metric='bbox')
configs/_base_/datasets/cityscapes_instance.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_type = 'CityscapesDataset'
2
+ data_root = 'data/cityscapes/'
3
+ img_norm_cfg = dict(
4
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile'),
7
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
8
+ dict(
9
+ type='Resize', img_scale=[(2048, 800), (2048, 1024)], keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='DefaultFormatBundle'),
14
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
15
+ ]
16
+ test_pipeline = [
17
+ dict(type='LoadImageFromFile'),
18
+ dict(
19
+ type='MultiScaleFlipAug',
20
+ img_scale=(2048, 1024),
21
+ flip=False,
22
+ transforms=[
23
+ dict(type='Resize', keep_ratio=True),
24
+ dict(type='RandomFlip'),
25
+ dict(type='Normalize', **img_norm_cfg),
26
+ dict(type='Pad', size_divisor=32),
27
+ dict(type='ImageToTensor', keys=['img']),
28
+ dict(type='Collect', keys=['img']),
29
+ ])
30
+ ]
31
+ data = dict(
32
+ samples_per_gpu=1,
33
+ workers_per_gpu=2,
34
+ train=dict(
35
+ type='RepeatDataset',
36
+ times=8,
37
+ dataset=dict(
38
+ type=dataset_type,
39
+ ann_file=data_root +
40
+ 'annotations/instancesonly_filtered_gtFine_train.json',
41
+ img_prefix=data_root + 'leftImg8bit/train/',
42
+ pipeline=train_pipeline)),
43
+ val=dict(
44
+ type=dataset_type,
45
+ ann_file=data_root +
46
+ 'annotations/instancesonly_filtered_gtFine_val.json',
47
+ img_prefix=data_root + 'leftImg8bit/val/',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ ann_file=data_root +
52
+ 'annotations/instancesonly_filtered_gtFine_test.json',
53
+ img_prefix=data_root + 'leftImg8bit/test/',
54
+ pipeline=test_pipeline))
55
+ evaluation = dict(metric=['bbox', 'segm'])
configs/_base_/datasets/coco_detection.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """目标检测
2
+ 路径/configs/base/datasets/coco_detection.py,
3
+ 第2行的data_toot数据集根目录路径,
4
+ 第8行的img_scale可以根据需要修改,
5
+ 第39行的samples_per_gpu表示batch size大小,太大会内存溢出
6
+ 第40行的workers_per_gpu表示每个GPU对应线程数,2、4、6、8按需修改
7
+ 下面train、test、val数据集的具体路径ann_file根据自己数据集修改
8
+ """
9
+ dataset_type = 'CocoDataset'
10
+ data_root = 'data/coco/'
11
+ img_norm_cfg = dict(
12
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
13
+ train_pipeline = [
14
+ dict(type='LoadImageFromFile'),
15
+ dict(type='LoadAnnotations', with_bbox=True), # , with_mask=False ,with_seg=False, poly2mask=False
16
+ dict(type='Resize', img_scale = [(224, 224)], keep_ratio=True),
17
+ dict(type='RandomFlip', flip_ratio=0.5),
18
+ dict(type='Normalize', **img_norm_cfg),
19
+ dict(type='Pad', size_divisor=32),
20
+ dict(type='DefaultFormatBundle'),
21
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
22
+ ]
23
+ test_pipeline = [
24
+ dict(type='LoadImageFromFile'),
25
+ dict(
26
+ type='MultiScaleFlipAug',
27
+ img_scale = [(224, 224)],
28
+ flip=False,
29
+ transforms=[
30
+ dict(type='Resize', keep_ratio=True),
31
+ dict(type='RandomFlip'),
32
+ dict(type='Normalize', **img_norm_cfg),
33
+ dict(type='Pad', size_divisor=32),
34
+ dict(type='ImageToTensor', keys=['img']),
35
+ dict(type='Collect', keys=['img']),
36
+ ])
37
+ ]
38
+ data = dict(
39
+ samples_per_gpu=1,
40
+ workers_per_gpu=8,
41
+ train=dict(
42
+ type=dataset_type,
43
+ ann_file=data_root + 'annotations/train.json',
44
+ img_prefix=data_root + 'train/',
45
+ pipeline=train_pipeline),
46
+ val=dict(
47
+ type=dataset_type,
48
+ ann_file=data_root + 'annotations/val.json',
49
+ img_prefix=data_root + 'val/',
50
+ pipeline=test_pipeline),
51
+ test=dict(
52
+ type=dataset_type,
53
+ ann_file=data_root + 'annotations/val.json',
54
+ img_prefix=data_root + 'val/',
55
+ pipeline=test_pipeline))
56
+ evaluation = dict(interval=1, metric='bbox')
configs/_base_/datasets/coco_instance.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """实例分割"""
2
+ dataset_type = 'CocoDataset'
3
+ data_root = 'data/coco/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ train_pipeline = [
7
+ dict(type='LoadImageFromFile'),
8
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
9
+ dict(type='Resize', img_scale = [(224, 224)], keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='DefaultFormatBundle'),
14
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
15
+ ]
16
+ test_pipeline = [
17
+ dict(type='LoadImageFromFile'),
18
+ dict(
19
+ type='MultiScaleFlipAug',
20
+ img_scale = [(224, 224)] ,
21
+ flip=False,
22
+ transforms=[
23
+ dict(type='Resize', keep_ratio=True),
24
+ dict(type='RandomFlip'),
25
+ dict(type='Normalize', **img_norm_cfg),
26
+ dict(type='Pad', size_divisor=32),
27
+ dict(type='ImageToTensor', keys=['img']),
28
+ dict(type='Collect', keys=['img']),
29
+ ])
30
+ ]
31
+ data = dict(
32
+ samples_per_gpu=1, # batch size
33
+ workers_per_gpu=2, # 每个GPU对应线程数 可以大一些
34
+
35
+ train=dict(
36
+ type=dataset_type,
37
+ ann_file=data_root + 'annotations/train.json',
38
+ img_prefix=data_root + 'train/',
39
+ pipeline=train_pipeline),
40
+ val=dict(
41
+ type=dataset_type,
42
+ ann_file=data_root + 'annotations/val.json',
43
+ img_prefix=data_root + 'val/',
44
+ pipeline=test_pipeline),
45
+ test=dict(
46
+ type=dataset_type,
47
+ ann_file=data_root + 'annotations/val.json',
48
+ img_prefix=data_root + 'val/',
49
+ pipeline=test_pipeline))
50
+ evaluation = dict(metric=['bbox', 'segm'])
configs/_base_/datasets/coco_instance_semantic.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_type = 'CocoDataset'
2
+ data_root = 'data/coco/'
3
+ img_norm_cfg = dict(
4
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile'),
7
+ dict(
8
+ type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True),
9
+ dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='SegRescale', scale_factor=1 / 8),
14
+ dict(type='DefaultFormatBundle'),
15
+ dict(
16
+ type='Collect',
17
+ keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(1333, 800),
24
+ flip=False,
25
+ transforms=[
26
+ dict(type='Resize', keep_ratio=True),
27
+ dict(type='RandomFlip', flip_ratio=0.5),
28
+ dict(type='Normalize', **img_norm_cfg),
29
+ dict(type='Pad', size_divisor=32),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=2,
36
+ workers_per_gpu=2,
37
+ train=dict(
38
+ type=dataset_type,
39
+ ann_file=data_root + 'annotations/instances_train2017.json',
40
+ img_prefix=data_root + 'train2017/',
41
+ seg_prefix=data_root + 'stuffthingmaps/train2017/',
42
+ pipeline=train_pipeline),
43
+ val=dict(
44
+ type=dataset_type,
45
+ ann_file=data_root + 'annotations/instances_val2017.json',
46
+ img_prefix=data_root + 'val2017/',
47
+ pipeline=test_pipeline),
48
+ test=dict(
49
+ type=dataset_type,
50
+ ann_file=data_root + 'annotations/instances_val2017.json',
51
+ img_prefix=data_root + 'val2017/',
52
+ pipeline=test_pipeline))
53
+ evaluation = dict(metric=['bbox', 'segm'])
configs/_base_/datasets/deepfashion.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'DeepFashionDataset'
3
+ data_root = 'data/DeepFashion/In-shop/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ train_pipeline = [
7
+ dict(type='LoadImageFromFile'),
8
+ dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
9
+ dict(type='Resize', img_scale=(750, 1101), keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='DefaultFormatBundle'),
14
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
15
+ ]
16
+ test_pipeline = [
17
+ dict(type='LoadImageFromFile'),
18
+ dict(
19
+ type='MultiScaleFlipAug',
20
+ img_scale=(750, 1101),
21
+ flip=False,
22
+ transforms=[
23
+ dict(type='Resize', keep_ratio=True),
24
+ dict(type='RandomFlip'),
25
+ dict(type='Normalize', **img_norm_cfg),
26
+ dict(type='Pad', size_divisor=32),
27
+ dict(type='ImageToTensor', keys=['img']),
28
+ dict(type='Collect', keys=['img']),
29
+ ])
30
+ ]
31
+ data = dict(
32
+ imgs_per_gpu=2,
33
+ workers_per_gpu=1,
34
+ train=dict(
35
+ type=dataset_type,
36
+ ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
37
+ img_prefix=data_root + 'Img/',
38
+ pipeline=train_pipeline,
39
+ data_root=data_root),
40
+ val=dict(
41
+ type=dataset_type,
42
+ ann_file=data_root + 'annotations/DeepFashion_segmentation_query.json',
43
+ img_prefix=data_root + 'Img/',
44
+ pipeline=test_pipeline,
45
+ data_root=data_root),
46
+ test=dict(
47
+ type=dataset_type,
48
+ ann_file=data_root +
49
+ 'annotations/DeepFashion_segmentation_gallery.json',
50
+ img_prefix=data_root + 'Img/',
51
+ pipeline=test_pipeline,
52
+ data_root=data_root))
53
+ evaluation = dict(interval=5, metric=['bbox', 'segm'])
configs/_base_/datasets/lvis_v0.5_instance.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = 'coco_instance.py'
2
+ dataset_type = 'LVISV05Dataset'
3
+ data_root = 'data/lvis_v0.5/'
4
+ data = dict(
5
+ samples_per_gpu=2,
6
+ workers_per_gpu=2,
7
+ train=dict(
8
+ _delete_=True,
9
+ type='ClassBalancedDataset',
10
+ oversample_thr=1e-3,
11
+ dataset=dict(
12
+ type=dataset_type,
13
+ ann_file=data_root + 'annotations/lvis_v0.5_train.json',
14
+ img_prefix=data_root + 'train2017/')),
15
+ val=dict(
16
+ type=dataset_type,
17
+ ann_file=data_root + 'annotations/lvis_v0.5_val.json',
18
+ img_prefix=data_root + 'val2017/'),
19
+ test=dict(
20
+ type=dataset_type,
21
+ ann_file=data_root + 'annotations/lvis_v0.5_val.json',
22
+ img_prefix=data_root + 'val2017/'))
23
+ evaluation = dict(metric=['bbox', 'segm'])
configs/_base_/datasets/lvis_v1_instance.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = 'coco_instance.py'
2
+ dataset_type = 'LVISV1Dataset'
3
+ data_root = 'data/lvis_v1/'
4
+ data = dict(
5
+ samples_per_gpu=2,
6
+ workers_per_gpu=2,
7
+ train=dict(
8
+ _delete_=True,
9
+ type='ClassBalancedDataset',
10
+ oversample_thr=1e-3,
11
+ dataset=dict(
12
+ type=dataset_type,
13
+ ann_file=data_root + 'annotations/lvis_v1_train.json',
14
+ img_prefix=data_root)),
15
+ val=dict(
16
+ type=dataset_type,
17
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
18
+ img_prefix=data_root),
19
+ test=dict(
20
+ type=dataset_type,
21
+ ann_file=data_root + 'annotations/lvis_v1_val.json',
22
+ img_prefix=data_root))
23
+ evaluation = dict(metric=['bbox', 'segm'])
configs/_base_/datasets/voc0712.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'VOCDataset'
3
+ data_root = 'data/VOCdevkit/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ train_pipeline = [
7
+ dict(type='LoadImageFromFile'),
8
+ dict(type='LoadAnnotations', with_bbox=True),
9
+ dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
10
+ dict(type='RandomFlip', flip_ratio=0.5),
11
+ dict(type='Normalize', **img_norm_cfg),
12
+ dict(type='Pad', size_divisor=32),
13
+ dict(type='DefaultFormatBundle'),
14
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
15
+ ]
16
+ test_pipeline = [
17
+ dict(type='LoadImageFromFile'),
18
+ dict(
19
+ type='MultiScaleFlipAug',
20
+ img_scale=(1000, 600),
21
+ flip=False,
22
+ transforms=[
23
+ dict(type='Resize', keep_ratio=True),
24
+ dict(type='RandomFlip'),
25
+ dict(type='Normalize', **img_norm_cfg),
26
+ dict(type='Pad', size_divisor=32),
27
+ dict(type='ImageToTensor', keys=['img']),
28
+ dict(type='Collect', keys=['img']),
29
+ ])
30
+ ]
31
+ data = dict(
32
+ samples_per_gpu=2,
33
+ workers_per_gpu=2,
34
+ train=dict(
35
+ type='RepeatDataset',
36
+ times=3,
37
+ dataset=dict(
38
+ type=dataset_type,
39
+ ann_file=[
40
+ data_root + 'VOC2007/ImageSets/Main/trainval.txt',
41
+ data_root + 'VOC2012/ImageSets/Main/trainval.txt'
42
+ ],
43
+ img_prefix=[data_root + 'VOC2007/', data_root + 'VOC2012/'],
44
+ pipeline=train_pipeline)),
45
+ val=dict(
46
+ type=dataset_type,
47
+ ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
48
+ img_prefix=data_root + 'VOC2007/',
49
+ pipeline=test_pipeline),
50
+ test=dict(
51
+ type=dataset_type,
52
+ ann_file=data_root + 'VOC2007/ImageSets/Main/test.txt',
53
+ img_prefix=data_root + 'VOC2007/',
54
+ pipeline=test_pipeline))
55
+ evaluation = dict(interval=1, metric='mAP')
configs/_base_/datasets/wider_face.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'WIDERFaceDataset'
3
+ data_root = 'data/WIDERFace/'
4
+ img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile', to_float32=True),
7
+ dict(type='LoadAnnotations', with_bbox=True),
8
+ dict(
9
+ type='PhotoMetricDistortion',
10
+ brightness_delta=32,
11
+ contrast_range=(0.5, 1.5),
12
+ saturation_range=(0.5, 1.5),
13
+ hue_delta=18),
14
+ dict(
15
+ type='Expand',
16
+ mean=img_norm_cfg['mean'],
17
+ to_rgb=img_norm_cfg['to_rgb'],
18
+ ratio_range=(1, 4)),
19
+ dict(
20
+ type='MinIoURandomCrop',
21
+ min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
22
+ min_crop_size=0.3),
23
+ dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
24
+ dict(type='Normalize', **img_norm_cfg),
25
+ dict(type='RandomFlip', flip_ratio=0.5),
26
+ dict(type='DefaultFormatBundle'),
27
+ dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
28
+ ]
29
+ test_pipeline = [
30
+ dict(type='LoadImageFromFile'),
31
+ dict(
32
+ type='MultiScaleFlipAug',
33
+ img_scale=(300, 300),
34
+ flip=False,
35
+ transforms=[
36
+ dict(type='Resize', keep_ratio=False),
37
+ dict(type='Normalize', **img_norm_cfg),
38
+ dict(type='ImageToTensor', keys=['img']),
39
+ dict(type='Collect', keys=['img']),
40
+ ])
41
+ ]
42
+ data = dict(
43
+ samples_per_gpu=60,
44
+ workers_per_gpu=2,
45
+ train=dict(
46
+ type='RepeatDataset',
47
+ times=2,
48
+ dataset=dict(
49
+ type=dataset_type,
50
+ ann_file=data_root + 'train.txt',
51
+ img_prefix=data_root + 'WIDER_train/',
52
+ min_size=17,
53
+ pipeline=train_pipeline)),
54
+ val=dict(
55
+ type=dataset_type,
56
+ ann_file=data_root + 'val.txt',
57
+ img_prefix=data_root + 'WIDER_val/',
58
+ pipeline=test_pipeline),
59
+ test=dict(
60
+ type=dataset_type,
61
+ ann_file=data_root + 'val.txt',
62
+ img_prefix=data_root + 'WIDER_val/',
63
+ pipeline=test_pipeline))
configs/_base_/default_runtime.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ 路径/configs/base/default_runtime.py中:
3
+ 第1行interval=1表示每1个epoch保存一次权重信息
4
+ 第4行interval=50表示每50次打印一次日志信息
5
+ 第14行load_from表示加载训练好的权重路径,可以不设置,在训练时终端中给定
6
+ """
7
+ # 表示多少个 epoch 验证一次,然后保存一次权重信息
8
+ # interval=1 表示每1个epoch保存一次权重信息
9
+ checkpoint_config = dict(interval=25)
10
+ # yapf:disable
11
+
12
+ log_config = dict(
13
+ interval=20, # 表示20个 epoch 打印一次日志信息
14
+ hooks=[
15
+ dict(type='TextLoggerHook'),
16
+ # dict(type='TensorboardLoggerHook')
17
+ ])
18
+ # yapf:enable
19
+ custom_hooks = [dict(type='NumClassCheckHook')]
20
+
21
+ dist_params = dict(backend='nccl')
22
+ log_level = 'INFO'
23
+ # loadfrom:表示加载哪一个训练好的权重
24
+ load_from = None
25
+ # load_from = r"checkpoints/latest.pth"
26
+ # load_from = r"checkpoints/mask_rcnn_swin_tiny_patch4_window7.pth"
27
+ # load_from = r"D:\Coding\University Course Study\CV project\Swin-Transformer-Object-Detection\mask_rcnn_swin_tiny_patch4_window7.pth"
28
+ resume_from = None
29
+ workflow = [('train', 1)]
configs/_base_/models/cascade_mask_rcnn_r50_fpn.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='CascadeRCNN',
4
+ pretrained='torchvision://resnet50',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=4,
9
+ out_indices=(0, 1, 2, 3),
10
+ frozen_stages=1,
11
+ norm_cfg=dict(type='BN', requires_grad=True),
12
+ norm_eval=True,
13
+ style='pytorch'),
14
+ neck=dict(
15
+ type='FPN',
16
+ in_channels=[256, 512, 1024, 2048],
17
+ out_channels=256,
18
+ num_outs=5),
19
+ rpn_head=dict(
20
+ type='RPNHead',
21
+ in_channels=256,
22
+ feat_channels=256,
23
+ anchor_generator=dict(
24
+ type='AnchorGenerator',
25
+ scales=[8],
26
+ ratios=[0.5, 1.0, 2.0],
27
+ strides=[4, 8, 16, 32, 64]),
28
+ bbox_coder=dict(
29
+ type='DeltaXYWHBBoxCoder',
30
+ target_means=[.0, .0, .0, .0],
31
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
32
+ loss_cls=dict(
33
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
34
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
35
+ roi_head=dict(
36
+ type='CascadeRoIHead',
37
+ num_stages=3,
38
+ stage_loss_weights=[1, 0.5, 0.25],
39
+ bbox_roi_extractor=dict(
40
+ type='SingleRoIExtractor',
41
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
42
+ out_channels=256,
43
+ featmap_strides=[4, 8, 16, 32]),
44
+ bbox_head=[
45
+ dict(
46
+ type='Shared2FCBBoxHead',
47
+ in_channels=256,
48
+ fc_out_channels=1024,
49
+ roi_feat_size=7,
50
+ num_classes=80,
51
+ bbox_coder=dict(
52
+ type='DeltaXYWHBBoxCoder',
53
+ target_means=[0., 0., 0., 0.],
54
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
55
+ reg_class_agnostic=True,
56
+ loss_cls=dict(
57
+ type='CrossEntropyLoss',
58
+ use_sigmoid=False,
59
+ loss_weight=1.0),
60
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
61
+ loss_weight=1.0)),
62
+ dict(
63
+ type='Shared2FCBBoxHead',
64
+ in_channels=256,
65
+ fc_out_channels=1024,
66
+ roi_feat_size=7,
67
+ num_classes=80,
68
+ bbox_coder=dict(
69
+ type='DeltaXYWHBBoxCoder',
70
+ target_means=[0., 0., 0., 0.],
71
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
72
+ reg_class_agnostic=True,
73
+ loss_cls=dict(
74
+ type='CrossEntropyLoss',
75
+ use_sigmoid=False,
76
+ loss_weight=1.0),
77
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
78
+ loss_weight=1.0)),
79
+ dict(
80
+ type='Shared2FCBBoxHead',
81
+ in_channels=256,
82
+ fc_out_channels=1024,
83
+ roi_feat_size=7,
84
+ num_classes=80,
85
+ bbox_coder=dict(
86
+ type='DeltaXYWHBBoxCoder',
87
+ target_means=[0., 0., 0., 0.],
88
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
89
+ reg_class_agnostic=True,
90
+ loss_cls=dict(
91
+ type='CrossEntropyLoss',
92
+ use_sigmoid=False,
93
+ loss_weight=1.0),
94
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
95
+ ],
96
+ mask_roi_extractor=dict(
97
+ type='SingleRoIExtractor',
98
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
99
+ out_channels=256,
100
+ featmap_strides=[4, 8, 16, 32]),
101
+ mask_head=dict(
102
+ type='FCNMaskHead',
103
+ num_convs=4,
104
+ in_channels=256,
105
+ conv_out_channels=256,
106
+ num_classes=80,
107
+ loss_mask=dict(
108
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
109
+ # model training and testing settings
110
+ train_cfg=dict(
111
+ rpn=dict(
112
+ assigner=dict(
113
+ type='MaxIoUAssigner',
114
+ pos_iou_thr=0.7,
115
+ neg_iou_thr=0.3,
116
+ min_pos_iou=0.3,
117
+ match_low_quality=True,
118
+ ignore_iof_thr=-1),
119
+ sampler=dict(
120
+ type='RandomSampler',
121
+ num=256,
122
+ pos_fraction=0.5,
123
+ neg_pos_ub=-1,
124
+ add_gt_as_proposals=False),
125
+ allowed_border=0,
126
+ pos_weight=-1,
127
+ debug=False),
128
+ rpn_proposal=dict(
129
+ nms_pre=2000,
130
+ max_per_img=2000,
131
+ nms=dict(type='nms', iou_threshold=0.7),
132
+ min_bbox_size=0),
133
+ rcnn=[
134
+ dict(
135
+ assigner=dict(
136
+ type='MaxIoUAssigner',
137
+ pos_iou_thr=0.5,
138
+ neg_iou_thr=0.5,
139
+ min_pos_iou=0.5,
140
+ match_low_quality=False,
141
+ ignore_iof_thr=-1),
142
+ sampler=dict(
143
+ type='RandomSampler',
144
+ num=512,
145
+ pos_fraction=0.25,
146
+ neg_pos_ub=-1,
147
+ add_gt_as_proposals=True),
148
+ mask_size=28,
149
+ pos_weight=-1,
150
+ debug=False),
151
+ dict(
152
+ assigner=dict(
153
+ type='MaxIoUAssigner',
154
+ pos_iou_thr=0.6,
155
+ neg_iou_thr=0.6,
156
+ min_pos_iou=0.6,
157
+ match_low_quality=False,
158
+ ignore_iof_thr=-1),
159
+ sampler=dict(
160
+ type='RandomSampler',
161
+ num=512,
162
+ pos_fraction=0.25,
163
+ neg_pos_ub=-1,
164
+ add_gt_as_proposals=True),
165
+ mask_size=28,
166
+ pos_weight=-1,
167
+ debug=False),
168
+ dict(
169
+ assigner=dict(
170
+ type='MaxIoUAssigner',
171
+ pos_iou_thr=0.7,
172
+ neg_iou_thr=0.7,
173
+ min_pos_iou=0.7,
174
+ match_low_quality=False,
175
+ ignore_iof_thr=-1),
176
+ sampler=dict(
177
+ type='RandomSampler',
178
+ num=512,
179
+ pos_fraction=0.25,
180
+ neg_pos_ub=-1,
181
+ add_gt_as_proposals=True),
182
+ mask_size=28,
183
+ pos_weight=-1,
184
+ debug=False)
185
+ ]),
186
+ test_cfg=dict(
187
+ rpn=dict(
188
+ nms_pre=1000,
189
+ max_per_img=1000,
190
+ nms=dict(type='nms', iou_threshold=0.7),
191
+ min_bbox_size=0),
192
+ rcnn=dict(
193
+ score_thr=0.05,
194
+ nms=dict(type='nms', iou_threshold=0.5),
195
+ max_per_img=100,
196
+ mask_thr_binary=0.5)))
configs/_base_/models/cascade_mask_rcnn_swin_fpn.py ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='CascadeRCNN',
4
+ pretrained=None,
5
+ backbone=dict(
6
+ type='SwinTransformer',
7
+ embed_dim=96,
8
+ depths=[2, 2, 6, 2],
9
+ num_heads=[3, 6, 12, 24],
10
+ window_size=7,
11
+ mlp_ratio=4.,
12
+ qkv_bias=True,
13
+ qk_scale=None,
14
+ drop_rate=0.,
15
+ attn_drop_rate=0.,
16
+ drop_path_rate=0.2,
17
+ ape=False,
18
+ patch_norm=True,
19
+ out_indices=(0, 1, 2, 3),
20
+ use_checkpoint=False),
21
+ neck=dict(
22
+ type='FPN',
23
+ in_channels=[96, 192, 384, 768],
24
+ out_channels=256,
25
+ num_outs=5),
26
+ rpn_head=dict(
27
+ type='RPNHead',
28
+ in_channels=256,
29
+ feat_channels=256,
30
+ anchor_generator=dict(
31
+ type='AnchorGenerator',
32
+ scales=[8],
33
+ ratios=[0.5, 1.0, 2.0],
34
+ strides=[4, 8, 16, 32, 64]),
35
+ bbox_coder=dict(
36
+ type='DeltaXYWHBBoxCoder',
37
+ target_means=[.0, .0, .0, .0],
38
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
39
+ loss_cls=dict(
40
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
41
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
42
+ roi_head=dict(
43
+ type='CascadeRoIHead',
44
+ num_stages=3,
45
+ stage_loss_weights=[1, 0.5, 0.25],
46
+ bbox_roi_extractor=dict(
47
+ type='SingleRoIExtractor',
48
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
49
+ out_channels=256,
50
+ featmap_strides=[4, 8, 16, 32]),
51
+ bbox_head=[
52
+ dict(
53
+ type='Shared2FCBBoxHead',
54
+ in_channels=256,
55
+ fc_out_channels=1024,
56
+ roi_feat_size=7,
57
+ num_classes=80,
58
+ bbox_coder=dict(
59
+ type='DeltaXYWHBBoxCoder',
60
+ target_means=[0., 0., 0., 0.],
61
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
62
+ reg_class_agnostic=True,
63
+ loss_cls=dict(
64
+ type='CrossEntropyLoss',
65
+ use_sigmoid=False,
66
+ loss_weight=1.0),
67
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
68
+ loss_weight=1.0)),
69
+ dict(
70
+ type='Shared2FCBBoxHead',
71
+ in_channels=256,
72
+ fc_out_channels=1024,
73
+ roi_feat_size=7,
74
+ num_classes=80,
75
+ bbox_coder=dict(
76
+ type='DeltaXYWHBBoxCoder',
77
+ target_means=[0., 0., 0., 0.],
78
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
79
+ reg_class_agnostic=True,
80
+ loss_cls=dict(
81
+ type='CrossEntropyLoss',
82
+ use_sigmoid=False,
83
+ loss_weight=1.0),
84
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
85
+ loss_weight=1.0)),
86
+ dict(
87
+ type='Shared2FCBBoxHead',
88
+ in_channels=256,
89
+ fc_out_channels=1024,
90
+ roi_feat_size=7,
91
+ num_classes=80,
92
+ bbox_coder=dict(
93
+ type='DeltaXYWHBBoxCoder',
94
+ target_means=[0., 0., 0., 0.],
95
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
96
+ reg_class_agnostic=True,
97
+ loss_cls=dict(
98
+ type='CrossEntropyLoss',
99
+ use_sigmoid=False,
100
+ loss_weight=1.0),
101
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
102
+ ],
103
+ mask_roi_extractor=dict(
104
+ type='SingleRoIExtractor',
105
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
106
+ out_channels=256,
107
+ featmap_strides=[4, 8, 16, 32]),
108
+ mask_head=dict(
109
+ type='FCNMaskHead',
110
+ num_convs=4,
111
+ in_channels=256,
112
+ conv_out_channels=256,
113
+ num_classes=80,
114
+ loss_mask=dict(
115
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
116
+ # model training and testing settings
117
+ train_cfg = dict(
118
+ rpn=dict(
119
+ assigner=dict(
120
+ type='MaxIoUAssigner',
121
+ pos_iou_thr=0.7,
122
+ neg_iou_thr=0.3,
123
+ min_pos_iou=0.3,
124
+ match_low_quality=True,
125
+ ignore_iof_thr=-1),
126
+ sampler=dict(
127
+ type='RandomSampler',
128
+ num=256,
129
+ pos_fraction=0.5,
130
+ neg_pos_ub=-1,
131
+ add_gt_as_proposals=False),
132
+ allowed_border=0,
133
+ pos_weight=-1,
134
+ debug=False),
135
+ rpn_proposal=dict(
136
+ nms_across_levels=False,
137
+ nms_pre=2000,
138
+ nms_post=2000,
139
+ max_per_img=2000,
140
+ nms=dict(type='nms', iou_threshold=0.7),
141
+ min_bbox_size=0),
142
+ rcnn=[
143
+ dict(
144
+ assigner=dict(
145
+ type='MaxIoUAssigner',
146
+ pos_iou_thr=0.5,
147
+ neg_iou_thr=0.5,
148
+ min_pos_iou=0.5,
149
+ match_low_quality=False,
150
+ ignore_iof_thr=-1),
151
+ sampler=dict(
152
+ type='RandomSampler',
153
+ num=512,
154
+ pos_fraction=0.25,
155
+ neg_pos_ub=-1,
156
+ add_gt_as_proposals=True),
157
+ mask_size=28,
158
+ pos_weight=-1,
159
+ debug=False),
160
+ dict(
161
+ assigner=dict(
162
+ type='MaxIoUAssigner',
163
+ pos_iou_thr=0.6,
164
+ neg_iou_thr=0.6,
165
+ min_pos_iou=0.6,
166
+ match_low_quality=False,
167
+ ignore_iof_thr=-1),
168
+ sampler=dict(
169
+ type='RandomSampler',
170
+ num=512,
171
+ pos_fraction=0.25,
172
+ neg_pos_ub=-1,
173
+ add_gt_as_proposals=True),
174
+ mask_size=28,
175
+ pos_weight=-1,
176
+ debug=False),
177
+ dict(
178
+ assigner=dict(
179
+ type='MaxIoUAssigner',
180
+ pos_iou_thr=0.7,
181
+ neg_iou_thr=0.7,
182
+ min_pos_iou=0.7,
183
+ match_low_quality=False,
184
+ ignore_iof_thr=-1),
185
+ sampler=dict(
186
+ type='RandomSampler',
187
+ num=512,
188
+ pos_fraction=0.25,
189
+ neg_pos_ub=-1,
190
+ add_gt_as_proposals=True),
191
+ mask_size=28,
192
+ pos_weight=-1,
193
+ debug=False)
194
+ ]),
195
+ test_cfg = dict(
196
+ rpn=dict(
197
+ nms_across_levels=False,
198
+ nms_pre=1000,
199
+ nms_post=1000,
200
+ max_per_img=1000,
201
+ nms=dict(type='nms', iou_threshold=0.7),
202
+ min_bbox_size=0),
203
+ rcnn=dict(
204
+ score_thr=0.05,
205
+ nms=dict(type='nms', iou_threshold=0.5),
206
+ max_per_img=100,
207
+ mask_thr_binary=0.5)))
configs/_base_/models/cascade_rcnn_r50_fpn.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='CascadeRCNN',
4
+ pretrained='torchvision://resnet50',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=4,
9
+ out_indices=(0, 1, 2, 3),
10
+ frozen_stages=1,
11
+ norm_cfg=dict(type='BN', requires_grad=True),
12
+ norm_eval=True,
13
+ style='pytorch'),
14
+ neck=dict(
15
+ type='FPN',
16
+ in_channels=[256, 512, 1024, 2048],
17
+ out_channels=256,
18
+ num_outs=5),
19
+ rpn_head=dict(
20
+ type='RPNHead',
21
+ in_channels=256,
22
+ feat_channels=256,
23
+ anchor_generator=dict(
24
+ type='AnchorGenerator',
25
+ scales=[8],
26
+ ratios=[0.5, 1.0, 2.0],
27
+ strides=[4, 8, 16, 32, 64]),
28
+ bbox_coder=dict(
29
+ type='DeltaXYWHBBoxCoder',
30
+ target_means=[.0, .0, .0, .0],
31
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
32
+ loss_cls=dict(
33
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
34
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
35
+ roi_head=dict(
36
+ type='CascadeRoIHead',
37
+ num_stages=3,
38
+ stage_loss_weights=[1, 0.5, 0.25],
39
+ bbox_roi_extractor=dict(
40
+ type='SingleRoIExtractor',
41
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
42
+ out_channels=256,
43
+ featmap_strides=[4, 8, 16, 32]),
44
+ bbox_head=[
45
+ dict(
46
+ type='Shared2FCBBoxHead',
47
+ in_channels=256,
48
+ fc_out_channels=1024,
49
+ roi_feat_size=7,
50
+ num_classes=80,
51
+ bbox_coder=dict(
52
+ type='DeltaXYWHBBoxCoder',
53
+ target_means=[0., 0., 0., 0.],
54
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
55
+ reg_class_agnostic=True,
56
+ loss_cls=dict(
57
+ type='CrossEntropyLoss',
58
+ use_sigmoid=False,
59
+ loss_weight=1.0),
60
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
61
+ loss_weight=1.0)),
62
+ dict(
63
+ type='Shared2FCBBoxHead',
64
+ in_channels=256,
65
+ fc_out_channels=1024,
66
+ roi_feat_size=7,
67
+ num_classes=80,
68
+ bbox_coder=dict(
69
+ type='DeltaXYWHBBoxCoder',
70
+ target_means=[0., 0., 0., 0.],
71
+ target_stds=[0.05, 0.05, 0.1, 0.1]),
72
+ reg_class_agnostic=True,
73
+ loss_cls=dict(
74
+ type='CrossEntropyLoss',
75
+ use_sigmoid=False,
76
+ loss_weight=1.0),
77
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
78
+ loss_weight=1.0)),
79
+ dict(
80
+ type='Shared2FCBBoxHead',
81
+ in_channels=256,
82
+ fc_out_channels=1024,
83
+ roi_feat_size=7,
84
+ num_classes=80,
85
+ bbox_coder=dict(
86
+ type='DeltaXYWHBBoxCoder',
87
+ target_means=[0., 0., 0., 0.],
88
+ target_stds=[0.033, 0.033, 0.067, 0.067]),
89
+ reg_class_agnostic=True,
90
+ loss_cls=dict(
91
+ type='CrossEntropyLoss',
92
+ use_sigmoid=False,
93
+ loss_weight=1.0),
94
+ loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
95
+ ]),
96
+ # model training and testing settings
97
+ train_cfg=dict(
98
+ rpn=dict(
99
+ assigner=dict(
100
+ type='MaxIoUAssigner',
101
+ pos_iou_thr=0.7,
102
+ neg_iou_thr=0.3,
103
+ min_pos_iou=0.3,
104
+ match_low_quality=True,
105
+ ignore_iof_thr=-1),
106
+ sampler=dict(
107
+ type='RandomSampler',
108
+ num=256,
109
+ pos_fraction=0.5,
110
+ neg_pos_ub=-1,
111
+ add_gt_as_proposals=False),
112
+ allowed_border=0,
113
+ pos_weight=-1,
114
+ debug=False),
115
+ rpn_proposal=dict(
116
+ nms_pre=2000,
117
+ max_per_img=2000,
118
+ nms=dict(type='nms', iou_threshold=0.7),
119
+ min_bbox_size=0),
120
+ rcnn=[
121
+ dict(
122
+ assigner=dict(
123
+ type='MaxIoUAssigner',
124
+ pos_iou_thr=0.5,
125
+ neg_iou_thr=0.5,
126
+ min_pos_iou=0.5,
127
+ match_low_quality=False,
128
+ ignore_iof_thr=-1),
129
+ sampler=dict(
130
+ type='RandomSampler',
131
+ num=512,
132
+ pos_fraction=0.25,
133
+ neg_pos_ub=-1,
134
+ add_gt_as_proposals=True),
135
+ pos_weight=-1,
136
+ debug=False),
137
+ dict(
138
+ assigner=dict(
139
+ type='MaxIoUAssigner',
140
+ pos_iou_thr=0.6,
141
+ neg_iou_thr=0.6,
142
+ min_pos_iou=0.6,
143
+ match_low_quality=False,
144
+ ignore_iof_thr=-1),
145
+ sampler=dict(
146
+ type='RandomSampler',
147
+ num=512,
148
+ pos_fraction=0.25,
149
+ neg_pos_ub=-1,
150
+ add_gt_as_proposals=True),
151
+ pos_weight=-1,
152
+ debug=False),
153
+ dict(
154
+ assigner=dict(
155
+ type='MaxIoUAssigner',
156
+ pos_iou_thr=0.7,
157
+ neg_iou_thr=0.7,
158
+ min_pos_iou=0.7,
159
+ match_low_quality=False,
160
+ ignore_iof_thr=-1),
161
+ sampler=dict(
162
+ type='RandomSampler',
163
+ num=512,
164
+ pos_fraction=0.25,
165
+ neg_pos_ub=-1,
166
+ add_gt_as_proposals=True),
167
+ pos_weight=-1,
168
+ debug=False)
169
+ ]),
170
+ test_cfg=dict(
171
+ rpn=dict(
172
+ nms_pre=1000,
173
+ max_per_img=1000,
174
+ nms=dict(type='nms', iou_threshold=0.7),
175
+ min_bbox_size=0),
176
+ rcnn=dict(
177
+ score_thr=0.05,
178
+ nms=dict(type='nms', iou_threshold=0.5),
179
+ max_per_img=100)))
configs/_base_/models/fast_rcnn_r50_fpn.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='FastRCNN',
4
+ pretrained='torchvision://resnet50',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=4,
9
+ out_indices=(0, 1, 2, 3),
10
+ frozen_stages=1,
11
+ norm_cfg=dict(type='BN', requires_grad=True),
12
+ norm_eval=True,
13
+ style='pytorch'),
14
+ neck=dict(
15
+ type='FPN',
16
+ in_channels=[256, 512, 1024, 2048],
17
+ out_channels=256,
18
+ num_outs=5),
19
+ roi_head=dict(
20
+ type='StandardRoIHead',
21
+ bbox_roi_extractor=dict(
22
+ type='SingleRoIExtractor',
23
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
24
+ out_channels=256,
25
+ featmap_strides=[4, 8, 16, 32]),
26
+ bbox_head=dict(
27
+ type='Shared2FCBBoxHead',
28
+ in_channels=256,
29
+ fc_out_channels=1024,
30
+ roi_feat_size=7,
31
+ num_classes=80,
32
+ bbox_coder=dict(
33
+ type='DeltaXYWHBBoxCoder',
34
+ target_means=[0., 0., 0., 0.],
35
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
36
+ reg_class_agnostic=False,
37
+ loss_cls=dict(
38
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
39
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
40
+ # model training and testing settings
41
+ train_cfg=dict(
42
+ rcnn=dict(
43
+ assigner=dict(
44
+ type='MaxIoUAssigner',
45
+ pos_iou_thr=0.5,
46
+ neg_iou_thr=0.5,
47
+ min_pos_iou=0.5,
48
+ match_low_quality=False,
49
+ ignore_iof_thr=-1),
50
+ sampler=dict(
51
+ type='RandomSampler',
52
+ num=512,
53
+ pos_fraction=0.25,
54
+ neg_pos_ub=-1,
55
+ add_gt_as_proposals=True),
56
+ pos_weight=-1,
57
+ debug=False)),
58
+ test_cfg=dict(
59
+ rcnn=dict(
60
+ score_thr=0.05,
61
+ nms=dict(type='nms', iou_threshold=0.5),
62
+ max_per_img=100)))
configs/_base_/models/faster_rcnn_r50_caffe_c4.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='BN', requires_grad=False)
3
+ model = dict(
4
+ type='FasterRCNN',
5
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
6
+ backbone=dict(
7
+ type='ResNet',
8
+ depth=50,
9
+ num_stages=3,
10
+ strides=(1, 2, 2),
11
+ dilations=(1, 1, 1),
12
+ out_indices=(2, ),
13
+ frozen_stages=1,
14
+ norm_cfg=norm_cfg,
15
+ norm_eval=True,
16
+ style='caffe'),
17
+ rpn_head=dict(
18
+ type='RPNHead',
19
+ in_channels=1024,
20
+ feat_channels=1024,
21
+ anchor_generator=dict(
22
+ type='AnchorGenerator',
23
+ scales=[2, 4, 8, 16, 32],
24
+ ratios=[0.5, 1.0, 2.0],
25
+ strides=[16]),
26
+ bbox_coder=dict(
27
+ type='DeltaXYWHBBoxCoder',
28
+ target_means=[.0, .0, .0, .0],
29
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
30
+ loss_cls=dict(
31
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
32
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
33
+ roi_head=dict(
34
+ type='StandardRoIHead',
35
+ shared_head=dict(
36
+ type='ResLayer',
37
+ depth=50,
38
+ stage=3,
39
+ stride=2,
40
+ dilation=1,
41
+ style='caffe',
42
+ norm_cfg=norm_cfg,
43
+ norm_eval=True),
44
+ bbox_roi_extractor=dict(
45
+ type='SingleRoIExtractor',
46
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
47
+ out_channels=1024,
48
+ featmap_strides=[16]),
49
+ bbox_head=dict(
50
+ type='BBoxHead',
51
+ with_avg_pool=True,
52
+ roi_feat_size=7,
53
+ in_channels=2048,
54
+ num_classes=80,
55
+ bbox_coder=dict(
56
+ type='DeltaXYWHBBoxCoder',
57
+ target_means=[0., 0., 0., 0.],
58
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
59
+ reg_class_agnostic=False,
60
+ loss_cls=dict(
61
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
62
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
63
+ # model training and testing settings
64
+ train_cfg=dict(
65
+ rpn=dict(
66
+ assigner=dict(
67
+ type='MaxIoUAssigner',
68
+ pos_iou_thr=0.7,
69
+ neg_iou_thr=0.3,
70
+ min_pos_iou=0.3,
71
+ match_low_quality=True,
72
+ ignore_iof_thr=-1),
73
+ sampler=dict(
74
+ type='RandomSampler',
75
+ num=256,
76
+ pos_fraction=0.5,
77
+ neg_pos_ub=-1,
78
+ add_gt_as_proposals=False),
79
+ allowed_border=0,
80
+ pos_weight=-1,
81
+ debug=False),
82
+ rpn_proposal=dict(
83
+ nms_pre=12000,
84
+ max_per_img=2000,
85
+ nms=dict(type='nms', iou_threshold=0.7),
86
+ min_bbox_size=0),
87
+ rcnn=dict(
88
+ assigner=dict(
89
+ type='MaxIoUAssigner',
90
+ pos_iou_thr=0.5,
91
+ neg_iou_thr=0.5,
92
+ min_pos_iou=0.5,
93
+ match_low_quality=False,
94
+ ignore_iof_thr=-1),
95
+ sampler=dict(
96
+ type='RandomSampler',
97
+ num=512,
98
+ pos_fraction=0.25,
99
+ neg_pos_ub=-1,
100
+ add_gt_as_proposals=True),
101
+ pos_weight=-1,
102
+ debug=False)),
103
+ test_cfg=dict(
104
+ rpn=dict(
105
+ nms_pre=6000,
106
+ max_per_img=1000,
107
+ nms=dict(type='nms', iou_threshold=0.7),
108
+ min_bbox_size=0),
109
+ rcnn=dict(
110
+ score_thr=0.05,
111
+ nms=dict(type='nms', iou_threshold=0.5),
112
+ max_per_img=100)))
configs/_base_/models/faster_rcnn_r50_caffe_dc5.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='BN', requires_grad=False)
3
+ model = dict(
4
+ type='FasterRCNN',
5
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
6
+ backbone=dict(
7
+ type='ResNet',
8
+ depth=50,
9
+ num_stages=4,
10
+ strides=(1, 2, 2, 1),
11
+ dilations=(1, 1, 1, 2),
12
+ out_indices=(3, ),
13
+ frozen_stages=1,
14
+ norm_cfg=norm_cfg,
15
+ norm_eval=True,
16
+ style='caffe'),
17
+ rpn_head=dict(
18
+ type='RPNHead',
19
+ in_channels=2048,
20
+ feat_channels=2048,
21
+ anchor_generator=dict(
22
+ type='AnchorGenerator',
23
+ scales=[2, 4, 8, 16, 32],
24
+ ratios=[0.5, 1.0, 2.0],
25
+ strides=[16]),
26
+ bbox_coder=dict(
27
+ type='DeltaXYWHBBoxCoder',
28
+ target_means=[.0, .0, .0, .0],
29
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
30
+ loss_cls=dict(
31
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
32
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
33
+ roi_head=dict(
34
+ type='StandardRoIHead',
35
+ bbox_roi_extractor=dict(
36
+ type='SingleRoIExtractor',
37
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
38
+ out_channels=2048,
39
+ featmap_strides=[16]),
40
+ bbox_head=dict(
41
+ type='Shared2FCBBoxHead',
42
+ in_channels=2048,
43
+ fc_out_channels=1024,
44
+ roi_feat_size=7,
45
+ num_classes=80,
46
+ bbox_coder=dict(
47
+ type='DeltaXYWHBBoxCoder',
48
+ target_means=[0., 0., 0., 0.],
49
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
50
+ reg_class_agnostic=False,
51
+ loss_cls=dict(
52
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
53
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
54
+ # model training and testing settings
55
+ train_cfg=dict(
56
+ rpn=dict(
57
+ assigner=dict(
58
+ type='MaxIoUAssigner',
59
+ pos_iou_thr=0.7,
60
+ neg_iou_thr=0.3,
61
+ min_pos_iou=0.3,
62
+ match_low_quality=True,
63
+ ignore_iof_thr=-1),
64
+ sampler=dict(
65
+ type='RandomSampler',
66
+ num=256,
67
+ pos_fraction=0.5,
68
+ neg_pos_ub=-1,
69
+ add_gt_as_proposals=False),
70
+ allowed_border=0,
71
+ pos_weight=-1,
72
+ debug=False),
73
+ rpn_proposal=dict(
74
+ nms_pre=12000,
75
+ max_per_img=2000,
76
+ nms=dict(type='nms', iou_threshold=0.7),
77
+ min_bbox_size=0),
78
+ rcnn=dict(
79
+ assigner=dict(
80
+ type='MaxIoUAssigner',
81
+ pos_iou_thr=0.5,
82
+ neg_iou_thr=0.5,
83
+ min_pos_iou=0.5,
84
+ match_low_quality=False,
85
+ ignore_iof_thr=-1),
86
+ sampler=dict(
87
+ type='RandomSampler',
88
+ num=512,
89
+ pos_fraction=0.25,
90
+ neg_pos_ub=-1,
91
+ add_gt_as_proposals=True),
92
+ pos_weight=-1,
93
+ debug=False)),
94
+ test_cfg=dict(
95
+ rpn=dict(
96
+ nms=dict(type='nms', iou_threshold=0.7),
97
+ nms_pre=6000,
98
+ max_per_img=1000,
99
+ min_bbox_size=0),
100
+ rcnn=dict(
101
+ score_thr=0.05,
102
+ nms=dict(type='nms', iou_threshold=0.5),
103
+ max_per_img=100)))
configs/_base_/models/faster_rcnn_r50_fpn.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model = dict(
2
+ type='FasterRCNN',
3
+ pretrained='torchvision://resnet50',
4
+ backbone=dict(
5
+ type='ResNet',
6
+ depth=50,
7
+ num_stages=4,
8
+ out_indices=(0, 1, 2, 3),
9
+ frozen_stages=1,
10
+ norm_cfg=dict(type='BN', requires_grad=True),
11
+ norm_eval=True,
12
+ style='pytorch'),
13
+ neck=dict(
14
+ type='FPN',
15
+ in_channels=[256, 512, 1024, 2048],
16
+ out_channels=256,
17
+ num_outs=5),
18
+ rpn_head=dict(
19
+ type='RPNHead',
20
+ in_channels=256,
21
+ feat_channels=256,
22
+ anchor_generator=dict(
23
+ type='AnchorGenerator',
24
+ scales=[8],
25
+ ratios=[0.5, 1.0, 2.0],
26
+ strides=[4, 8, 16, 32, 64]),
27
+ bbox_coder=dict(
28
+ type='DeltaXYWHBBoxCoder',
29
+ target_means=[.0, .0, .0, .0],
30
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
31
+ loss_cls=dict(
32
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
33
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
34
+ roi_head=dict(
35
+ type='StandardRoIHead',
36
+ bbox_roi_extractor=dict(
37
+ type='SingleRoIExtractor',
38
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
39
+ out_channels=256,
40
+ featmap_strides=[4, 8, 16, 32]),
41
+ bbox_head=dict(
42
+ type='Shared2FCBBoxHead',
43
+ in_channels=256,
44
+ fc_out_channels=1024,
45
+ roi_feat_size=7,
46
+ num_classes=80,
47
+ bbox_coder=dict(
48
+ type='DeltaXYWHBBoxCoder',
49
+ target_means=[0., 0., 0., 0.],
50
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
51
+ reg_class_agnostic=False,
52
+ loss_cls=dict(
53
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
54
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
55
+ # model training and testing settings
56
+ train_cfg=dict(
57
+ rpn=dict(
58
+ assigner=dict(
59
+ type='MaxIoUAssigner',
60
+ pos_iou_thr=0.7,
61
+ neg_iou_thr=0.3,
62
+ min_pos_iou=0.3,
63
+ match_low_quality=True,
64
+ ignore_iof_thr=-1),
65
+ sampler=dict(
66
+ type='RandomSampler',
67
+ num=256,
68
+ pos_fraction=0.5,
69
+ neg_pos_ub=-1,
70
+ add_gt_as_proposals=False),
71
+ allowed_border=-1,
72
+ pos_weight=-1,
73
+ debug=False),
74
+ rpn_proposal=dict(
75
+ nms_pre=2000,
76
+ max_per_img=1000,
77
+ nms=dict(type='nms', iou_threshold=0.7),
78
+ min_bbox_size=0),
79
+ rcnn=dict(
80
+ assigner=dict(
81
+ type='MaxIoUAssigner',
82
+ pos_iou_thr=0.5,
83
+ neg_iou_thr=0.5,
84
+ min_pos_iou=0.5,
85
+ match_low_quality=False,
86
+ ignore_iof_thr=-1),
87
+ sampler=dict(
88
+ type='RandomSampler',
89
+ num=512,
90
+ pos_fraction=0.25,
91
+ neg_pos_ub=-1,
92
+ add_gt_as_proposals=True),
93
+ pos_weight=-1,
94
+ debug=False)),
95
+ test_cfg=dict(
96
+ rpn=dict(
97
+ nms_pre=1000,
98
+ max_per_img=1000,
99
+ nms=dict(type='nms', iou_threshold=0.7),
100
+ min_bbox_size=0),
101
+ rcnn=dict(
102
+ score_thr=0.05,
103
+ nms=dict(type='nms', iou_threshold=0.5),
104
+ max_per_img=100)
105
+ # soft-nms is also supported for rcnn testing
106
+ # e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
107
+ ))
configs/_base_/models/mask_rcnn_r50_caffe_c4.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='BN', requires_grad=False)
3
+ model = dict(
4
+ type='MaskRCNN',
5
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
6
+ backbone=dict(
7
+ type='ResNet',
8
+ depth=50,
9
+ num_stages=3,
10
+ strides=(1, 2, 2),
11
+ dilations=(1, 1, 1),
12
+ out_indices=(2, ),
13
+ frozen_stages=1,
14
+ norm_cfg=norm_cfg,
15
+ norm_eval=True,
16
+ style='caffe'),
17
+ rpn_head=dict(
18
+ type='RPNHead',
19
+ in_channels=1024,
20
+ feat_channels=1024,
21
+ anchor_generator=dict(
22
+ type='AnchorGenerator',
23
+ scales=[2, 4, 8, 16, 32],
24
+ ratios=[0.5, 1.0, 2.0],
25
+ strides=[16]),
26
+ bbox_coder=dict(
27
+ type='DeltaXYWHBBoxCoder',
28
+ target_means=[.0, .0, .0, .0],
29
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
30
+ loss_cls=dict(
31
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
32
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
33
+ roi_head=dict(
34
+ type='StandardRoIHead',
35
+ shared_head=dict(
36
+ type='ResLayer',
37
+ depth=50,
38
+ stage=3,
39
+ stride=2,
40
+ dilation=1,
41
+ style='caffe',
42
+ norm_cfg=norm_cfg,
43
+ norm_eval=True),
44
+ bbox_roi_extractor=dict(
45
+ type='SingleRoIExtractor',
46
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
47
+ out_channels=1024,
48
+ featmap_strides=[16]),
49
+ bbox_head=dict(
50
+ type='BBoxHead',
51
+ with_avg_pool=True,
52
+ roi_feat_size=7,
53
+ in_channels=2048,
54
+ num_classes=80,
55
+ bbox_coder=dict(
56
+ type='DeltaXYWHBBoxCoder',
57
+ target_means=[0., 0., 0., 0.],
58
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
59
+ reg_class_agnostic=False,
60
+ loss_cls=dict(
61
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
62
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
63
+ mask_roi_extractor=None,
64
+ mask_head=dict(
65
+ type='FCNMaskHead',
66
+ num_convs=0,
67
+ in_channels=2048,
68
+ conv_out_channels=256,
69
+ num_classes=80,
70
+ loss_mask=dict(
71
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
72
+ # model training and testing settings
73
+ train_cfg=dict(
74
+ rpn=dict(
75
+ assigner=dict(
76
+ type='MaxIoUAssigner',
77
+ pos_iou_thr=0.7,
78
+ neg_iou_thr=0.3,
79
+ min_pos_iou=0.3,
80
+ match_low_quality=True,
81
+ ignore_iof_thr=-1),
82
+ sampler=dict(
83
+ type='RandomSampler',
84
+ num=256,
85
+ pos_fraction=0.5,
86
+ neg_pos_ub=-1,
87
+ add_gt_as_proposals=False),
88
+ allowed_border=0,
89
+ pos_weight=-1,
90
+ debug=False),
91
+ rpn_proposal=dict(
92
+ nms_pre=12000,
93
+ max_per_img=2000,
94
+ nms=dict(type='nms', iou_threshold=0.7),
95
+ min_bbox_size=0),
96
+ rcnn=dict(
97
+ assigner=dict(
98
+ type='MaxIoUAssigner',
99
+ pos_iou_thr=0.5,
100
+ neg_iou_thr=0.5,
101
+ min_pos_iou=0.5,
102
+ match_low_quality=False,
103
+ ignore_iof_thr=-1),
104
+ sampler=dict(
105
+ type='RandomSampler',
106
+ num=512,
107
+ pos_fraction=0.25,
108
+ neg_pos_ub=-1,
109
+ add_gt_as_proposals=True),
110
+ mask_size=14,
111
+ pos_weight=-1,
112
+ debug=False)),
113
+ test_cfg=dict(
114
+ rpn=dict(
115
+ nms_pre=6000,
116
+ nms=dict(type='nms', iou_threshold=0.7),
117
+ max_per_img=1000,
118
+ min_bbox_size=0),
119
+ rcnn=dict(
120
+ score_thr=0.05,
121
+ nms=dict(type='nms', iou_threshold=0.5),
122
+ max_per_img=100,
123
+ mask_thr_binary=0.5)))
configs/_base_/models/mask_rcnn_r50_fpn.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='MaskRCNN',
4
+ pretrained='torchvision://resnet50',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=4,
9
+ out_indices=(0, 1, 2, 3),
10
+ frozen_stages=1,
11
+ norm_cfg=dict(type='BN', requires_grad=True),
12
+ norm_eval=True,
13
+ style='pytorch'),
14
+ neck=dict(
15
+ type='FPN',
16
+ in_channels=[256, 512, 1024, 2048],
17
+ out_channels=256,
18
+ num_outs=5),
19
+ rpn_head=dict(
20
+ type='RPNHead',
21
+ in_channels=256,
22
+ feat_channels=256,
23
+ anchor_generator=dict(
24
+ type='AnchorGenerator',
25
+ scales=[8],
26
+ ratios=[0.5, 1.0, 2.0],
27
+ strides=[4, 8, 16, 32, 64]),
28
+ bbox_coder=dict(
29
+ type='DeltaXYWHBBoxCoder',
30
+ target_means=[.0, .0, .0, .0],
31
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
32
+ loss_cls=dict(
33
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
34
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
35
+ roi_head=dict(
36
+ type='StandardRoIHead',
37
+ bbox_roi_extractor=dict(
38
+ type='SingleRoIExtractor',
39
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
40
+ out_channels=256,
41
+ featmap_strides=[4, 8, 16, 32]),
42
+ bbox_head=dict(
43
+ type='Shared2FCBBoxHead',
44
+ in_channels=256,
45
+ fc_out_channels=1024,
46
+ roi_feat_size=7,
47
+ num_classes=80,
48
+ bbox_coder=dict(
49
+ type='DeltaXYWHBBoxCoder',
50
+ target_means=[0., 0., 0., 0.],
51
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
52
+ reg_class_agnostic=False,
53
+ loss_cls=dict(
54
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
55
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
56
+ mask_roi_extractor=dict(
57
+ type='SingleRoIExtractor',
58
+ roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
59
+ out_channels=256,
60
+ featmap_strides=[4, 8, 16, 32]),
61
+ mask_head=dict(
62
+ type='FCNMaskHead',
63
+ num_convs=4,
64
+ in_channels=256,
65
+ conv_out_channels=256,
66
+ num_classes=80,
67
+ loss_mask=dict(
68
+ type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
69
+ # model training and testing settings
70
+ train_cfg=dict(
71
+ rpn=dict(
72
+ assigner=dict(
73
+ type='MaxIoUAssigner',
74
+ pos_iou_thr=0.7,
75
+ neg_iou_thr=0.3,
76
+ min_pos_iou=0.3,
77
+ match_low_quality=True,
78
+ ignore_iof_thr=-1),
79
+ sampler=dict(
80
+ type='RandomSampler',
81
+ num=256,
82
+ pos_fraction=0.5,
83
+ neg_pos_ub=-1,
84
+ add_gt_as_proposals=False),
85
+ allowed_border=-1,
86
+ pos_weight=-1,
87
+ debug=False),
88
+ rpn_proposal=dict(
89
+ nms_pre=2000,
90
+ max_per_img=1000,
91
+ nms=dict(type='nms', iou_threshold=0.7),
92
+ min_bbox_size=0),
93
+ rcnn=dict(
94
+ assigner=dict(
95
+ type='MaxIoUAssigner',
96
+ pos_iou_thr=0.5,
97
+ neg_iou_thr=0.5,
98
+ min_pos_iou=0.5,
99
+ match_low_quality=True,
100
+ ignore_iof_thr=-1),
101
+ sampler=dict(
102
+ type='RandomSampler',
103
+ num=512,
104
+ pos_fraction=0.25,
105
+ neg_pos_ub=-1,
106
+ add_gt_as_proposals=True),
107
+ mask_size=28,
108
+ pos_weight=-1,
109
+ debug=False)),
110
+ test_cfg=dict(
111
+ rpn=dict(
112
+ nms_pre=1000,
113
+ max_per_img=1000,
114
+ nms=dict(type='nms', iou_threshold=0.7),
115
+ min_bbox_size=0),
116
+ rcnn=dict(
117
+ score_thr=0.05,
118
+ nms=dict(type='nms', iou_threshold=0.5),
119
+ max_per_img=100,
120
+ mask_thr_binary=0.5)))
configs/_base_/models/mask_rcnn_swin_fpn.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ """
3
+ 路径./configs/base/models/mask_rcnn_swin_fpn.py中第75行use_mask=True 修改为use_mask=False
4
+ 还需要删除mask_roi_extractor和mask_head两个变量,大概在第63行和68行,
5
+ 这里删除之后注意末尾的逗号和小括号的格式匹配问题
6
+ 改num_classes=12
7
+ """
8
+
9
+ model = dict(
10
+ type='MaskRCNN',
11
+ pretrained=None,
12
+ backbone=dict(
13
+ type='SwinTransformer',
14
+ embed_dim=96,
15
+ depths=[2, 2, 6, 2],
16
+ num_heads=[3, 6, 12, 24],
17
+ window_size=7,
18
+ mlp_ratio=4.,
19
+ qkv_bias=True,
20
+ qk_scale=None,
21
+ drop_rate=0.,
22
+ attn_drop_rate=0.,
23
+ drop_path_rate=0.2,
24
+ ape=False,
25
+ patch_norm=True,
26
+ out_indices=(0, 1, 2, 3),
27
+ use_checkpoint=False),
28
+ neck=dict(
29
+ type='FPN',
30
+ in_channels=[96, 192, 384, 768],
31
+ out_channels=256,
32
+ num_outs=5),
33
+ rpn_head=dict(
34
+ type='RPNHead',
35
+ in_channels=256,
36
+ feat_channels=256,
37
+ anchor_generator=dict(
38
+ type='AnchorGenerator',
39
+ scales=[8],
40
+ ratios=[0.5, 1.0, 2.0],
41
+ strides=[4, 8, 16, 32, 64]),
42
+ bbox_coder=dict(
43
+ type='DeltaXYWHBBoxCoder',
44
+ target_means=[.0, .0, .0, .0],
45
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
46
+ loss_cls=dict(
47
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
48
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
49
+ roi_head=dict(
50
+ type='StandardRoIHead',
51
+ bbox_roi_extractor=dict(
52
+ type='SingleRoIExtractor',
53
+ roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
54
+ out_channels=256,
55
+ featmap_strides=[4, 8, 16, 32]),
56
+ bbox_head=dict(
57
+ type='Shared2FCBBoxHead',
58
+ in_channels=256,
59
+ fc_out_channels=1024,
60
+ roi_feat_size=7,
61
+ num_classes=12,
62
+ bbox_coder=dict(
63
+ type='DeltaXYWHBBoxCoder',
64
+ target_means=[0., 0., 0., 0.],
65
+ target_stds=[0.1, 0.1, 0.2, 0.2]),
66
+ reg_class_agnostic=False,
67
+ loss_cls=dict(
68
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
69
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
70
+ # 删除mask,让实例分割变成目标检测
71
+ #mask_roi_extractor=dict(
72
+ # type='SingleRoIExtractor',
73
+ # roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
74
+ # out_channels=256,
75
+ # featmap_strides=[4, 8, 16, 32]),
76
+ #mask_head=dict(
77
+ # type='FCNMaskHead',
78
+ # num_convs=4,
79
+ # in_channels=256,
80
+ # conv_out_channels=256,
81
+ # num_classes=12,
82
+ # loss_mask=dict(
83
+ # type='CrossEntropyLoss', use_mask=False, loss_weight=1.0))
84
+ ),
85
+ # model training and testing settings
86
+ train_cfg=dict(
87
+ rpn=dict(
88
+ assigner=dict(
89
+ type='MaxIoUAssigner',
90
+ pos_iou_thr=0.7,
91
+ neg_iou_thr=0.3,
92
+ min_pos_iou=0.3,
93
+ match_low_quality=True,
94
+ ignore_iof_thr=-1),
95
+ sampler=dict(
96
+ type='RandomSampler',
97
+ num=256,
98
+ pos_fraction=0.5,
99
+ neg_pos_ub=-1,
100
+ add_gt_as_proposals=False),
101
+ allowed_border=-1,
102
+ pos_weight=-1,
103
+ debug=False),
104
+ rpn_proposal=dict(
105
+ nms_pre=2000,
106
+ max_per_img=1000,
107
+ nms=dict(type='nms', iou_threshold=0.7),
108
+ min_bbox_size=0),
109
+ rcnn=dict(
110
+ assigner=dict(
111
+ type='MaxIoUAssigner',
112
+ pos_iou_thr=0.5,
113
+ neg_iou_thr=0.5,
114
+ min_pos_iou=0.5,
115
+ match_low_quality=True,
116
+ ignore_iof_thr=-1),
117
+ sampler=dict(
118
+ type='RandomSampler',
119
+ num=512,
120
+ pos_fraction=0.25,
121
+ neg_pos_ub=-1,
122
+ add_gt_as_proposals=True),
123
+ mask_size=28,
124
+ pos_weight=-1,
125
+ debug=False)),
126
+ test_cfg=dict(
127
+ rpn=dict(
128
+ nms_pre=1000,
129
+ max_per_img=1000,
130
+ nms=dict(type='nms', iou_threshold=0.7),
131
+ min_bbox_size=0),
132
+ rcnn=dict(
133
+ score_thr=0.05,
134
+ nms=dict(type='nms', iou_threshold=0.5),
135
+ max_per_img=100,
136
+ mask_thr_binary=0.5)))
configs/_base_/models/mask_reppointsv2_swin_bifpn.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
3
+ model = dict(
4
+ type='RepPointsV2MaskDetector',
5
+ pretrained=None,
6
+ backbone=dict(
7
+ type='SwinTransformer',
8
+ embed_dim=96,
9
+ depths=[2, 2, 6, 2],
10
+ num_heads=[3, 6, 12, 24],
11
+ window_size=7,
12
+ mlp_ratio=4.,
13
+ qkv_bias=True,
14
+ qk_scale=None,
15
+ drop_rate=0.,
16
+ attn_drop_rate=0.,
17
+ drop_path_rate=0.2,
18
+ ape=False,
19
+ patch_norm=True,
20
+ out_indices=(1, 2, 3),
21
+ use_checkpoint=False),
22
+ neck=dict(
23
+ type='BiFPN',
24
+ in_channels=[192, 384, 768],
25
+ out_channels=256,
26
+ start_level=0,
27
+ add_extra_convs=False,
28
+ num_outs=5,
29
+ no_norm_on_lateral=False,
30
+ num_repeat=2,
31
+ norm_cfg=norm_cfg
32
+ ),
33
+ bbox_head=dict(
34
+ type='RepPointsV2Head',
35
+ num_classes=80,
36
+ in_channels=256,
37
+ feat_channels=256,
38
+ point_feat_channels=256,
39
+ stacked_convs=3,
40
+ shared_stacked_convs=1,
41
+ first_kernel_size=3,
42
+ kernel_size=1,
43
+ corner_dim=64,
44
+ num_points=9,
45
+ gradient_mul=0.1,
46
+ point_strides=[8, 16, 32, 64, 128],
47
+ point_base_scale=4,
48
+ norm_cfg=norm_cfg,
49
+ loss_cls=dict(
50
+ type='RPDQualityFocalLoss',
51
+ use_sigmoid=True,
52
+ beta=2.0,
53
+ loss_weight=1.0),
54
+ loss_bbox_init=dict(type='RPDGIoULoss', loss_weight=1.0),
55
+ loss_bbox_refine=dict(type='RPDGIoULoss', loss_weight=2.0),
56
+ loss_heatmap=dict(
57
+ type='GaussianFocalLoss',
58
+ alpha=2.0,
59
+ gamma=4.0,
60
+ loss_weight=0.25),
61
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
62
+ loss_sem=dict(
63
+ type='SEPFocalLoss',
64
+ gamma=2.0,
65
+ alpha=0.25,
66
+ loss_weight=0.1),
67
+ transform_method='exact_minmax',
68
+ # new for condconv
69
+ coord_pos='center',
70
+ mask_head=dict(
71
+ type='CondConvMaskHead',
72
+ branch_cfg=dict(
73
+ in_channels=256, # == neck out channels
74
+ channels=128,
75
+ in_features=[0,1,2],
76
+ out_stride=[8,16,32], # p3, p4, p5
77
+ norm=dict(type='BN', requires_grad=True),
78
+ num_convs=4,
79
+ out_channels=8,
80
+ semantic_loss_on=False,
81
+ num_classes=80,
82
+ loss_sem=dict(
83
+ type='FocalLoss',
84
+ use_sigmoid=True,
85
+ gamma=2.0,
86
+ alpha=0.25,
87
+ loss_weight=1.0,
88
+ prior_prob=0.01)
89
+ ),
90
+ head_cfg=dict(
91
+ channels=8,
92
+ disable_rel_coords=False,
93
+ num_layers=3,
94
+ use_fp16=False,
95
+ mask_out_stride=4,
96
+ max_proposals=500,
97
+ aux_loss=True,
98
+ mask_loss_weight=[0.,0.6,1.],
99
+ sizes_of_interest=[64, 128, 256, 512, 1024]
100
+ ),
101
+ )),
102
+ train_cfg = dict(
103
+ init=dict(
104
+ assigner=dict(type='PointAssignerV2', scale=4, pos_num=1, mask_center_sample=True, use_center=True),
105
+ allowed_border=-1,
106
+ pos_weight=-1,
107
+ debug=False),
108
+ heatmap=dict(
109
+ assigner=dict(type='PointHMAssigner', gaussian_bump=True, gaussian_iou=0.7),
110
+ allowed_border=-1,
111
+ pos_weight=-1,
112
+ debug=False),
113
+ refine=dict(
114
+ assigner=dict(type='ATSSAssignerV2', topk=9, mask_center_sample=True),
115
+ allowed_border=-1,
116
+ pos_weight=-1,
117
+ debug=False)),
118
+ test_cfg = dict(
119
+ nms_pre=1000,
120
+ min_bbox_size=0,
121
+ score_thr=0.05,
122
+ nms=dict(type='nms', iou_threshold=0.6),
123
+ max_per_img=100)
124
+ )
configs/_base_/models/reppointsv2_swin_bifpn.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
3
+ model = dict(
4
+ type='RepPointsV2Detector',
5
+ pretrained=None,
6
+ backbone=dict(
7
+ type='SwinTransformer',
8
+ embed_dim=96,
9
+ depths=[2, 2, 6, 2],
10
+ num_heads=[3, 6, 12, 24],
11
+ window_size=7,
12
+ mlp_ratio=4.,
13
+ qkv_bias=True,
14
+ qk_scale=None,
15
+ drop_rate=0.,
16
+ attn_drop_rate=0.,
17
+ drop_path_rate=0.2,
18
+ ape=False,
19
+ patch_norm=True,
20
+ out_indices=(1, 2, 3),
21
+ use_checkpoint=False),
22
+ neck=dict(
23
+ type='BiFPN',
24
+ in_channels=[192, 384, 768],
25
+ out_channels=256,
26
+ start_level=0,
27
+ add_extra_convs=False,
28
+ num_outs=5,
29
+ no_norm_on_lateral=False,
30
+ num_repeat=2,
31
+ norm_cfg=norm_cfg
32
+ ),
33
+ bbox_head=dict(
34
+ type='RepPointsV2Head',
35
+ num_classes=80,
36
+ in_channels=256,
37
+ feat_channels=256,
38
+ point_feat_channels=256,
39
+ stacked_convs=3,
40
+ shared_stacked_convs=1,
41
+ first_kernel_size=3,
42
+ kernel_size=1,
43
+ corner_dim=64,
44
+ num_points=9,
45
+ gradient_mul=0.1,
46
+ point_strides=[8, 16, 32, 64, 128],
47
+ point_base_scale=4,
48
+ norm_cfg=norm_cfg,
49
+ loss_cls=dict(
50
+ type='RPDQualityFocalLoss',
51
+ use_sigmoid=True,
52
+ beta=2.0,
53
+ loss_weight=1.0),
54
+ loss_bbox_init=dict(type='RPDGIoULoss', loss_weight=1.0),
55
+ loss_bbox_refine=dict(type='RPDGIoULoss', loss_weight=2.0),
56
+ loss_heatmap=dict(
57
+ type='GaussianFocalLoss',
58
+ alpha=2.0,
59
+ gamma=4.0,
60
+ loss_weight=0.25),
61
+ loss_offset=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
62
+ loss_sem=dict(
63
+ type='SEPFocalLoss',
64
+ gamma=2.0,
65
+ alpha=0.25,
66
+ loss_weight=0.1),
67
+ transform_method='exact_minmax'),
68
+ # training and testing settings
69
+ train_cfg = dict(
70
+ init=dict(
71
+ assigner=dict(type='PointAssignerV2', scale=4, pos_num=1),
72
+ allowed_border=-1,
73
+ pos_weight=-1,
74
+ debug=False),
75
+ heatmap=dict(
76
+ assigner=dict(type='PointHMAssigner', gaussian_bump=True, gaussian_iou=0.7),
77
+ allowed_border=-1,
78
+ pos_weight=-1,
79
+ debug=False),
80
+ refine=dict(
81
+ assigner=dict(type='ATSSAssignerV2', topk=9),
82
+ allowed_border=-1,
83
+ pos_weight=-1,
84
+ debug=False)),
85
+ test_cfg = dict(
86
+ nms_pre=1000,
87
+ min_bbox_size=0,
88
+ score_thr=0.05,
89
+ nms=dict(type='nms', iou_threshold=0.6),
90
+ max_per_img=100),
91
+ )
configs/_base_/models/retinanet_r50_fpn.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='RetinaNet',
4
+ pretrained='torchvision://resnet50',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=4,
9
+ out_indices=(0, 1, 2, 3),
10
+ frozen_stages=1,
11
+ norm_cfg=dict(type='BN', requires_grad=True),
12
+ norm_eval=True,
13
+ style='pytorch'),
14
+ neck=dict(
15
+ type='FPN',
16
+ in_channels=[256, 512, 1024, 2048],
17
+ out_channels=256,
18
+ start_level=1,
19
+ add_extra_convs='on_input',
20
+ num_outs=5),
21
+ bbox_head=dict(
22
+ type='RetinaHead',
23
+ num_classes=80,
24
+ in_channels=256,
25
+ stacked_convs=4,
26
+ feat_channels=256,
27
+ anchor_generator=dict(
28
+ type='AnchorGenerator',
29
+ octave_base_scale=4,
30
+ scales_per_octave=3,
31
+ ratios=[0.5, 1.0, 2.0],
32
+ strides=[8, 16, 32, 64, 128]),
33
+ bbox_coder=dict(
34
+ type='DeltaXYWHBBoxCoder',
35
+ target_means=[.0, .0, .0, .0],
36
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
37
+ loss_cls=dict(
38
+ type='FocalLoss',
39
+ use_sigmoid=True,
40
+ gamma=2.0,
41
+ alpha=0.25,
42
+ loss_weight=1.0),
43
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
44
+ # training and testing settings
45
+ train_cfg=dict(
46
+ assigner=dict(
47
+ type='MaxIoUAssigner',
48
+ pos_iou_thr=0.5,
49
+ neg_iou_thr=0.4,
50
+ min_pos_iou=0,
51
+ ignore_iof_thr=-1),
52
+ allowed_border=-1,
53
+ pos_weight=-1,
54
+ debug=False),
55
+ test_cfg=dict(
56
+ nms_pre=1000,
57
+ min_bbox_size=0,
58
+ score_thr=0.05,
59
+ nms=dict(type='nms', iou_threshold=0.5),
60
+ max_per_img=100))
configs/_base_/models/rpn_r50_caffe_c4.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ model = dict(
3
+ type='RPN',
4
+ pretrained='open-mmlab://detectron2/resnet50_caffe',
5
+ backbone=dict(
6
+ type='ResNet',
7
+ depth=50,
8
+ num_stages=3,
9
+ strides=(1, 2, 2),
10
+ dilations=(1, 1, 1),
11
+ out_indices=(2, ),
12
+ frozen_stages=1,
13
+ norm_cfg=dict(type='BN', requires_grad=False),
14
+ norm_eval=True,
15
+ style='caffe'),
16
+ neck=None,
17
+ rpn_head=dict(
18
+ type='RPNHead',
19
+ in_channels=1024,
20
+ feat_channels=1024,
21
+ anchor_generator=dict(
22
+ type='AnchorGenerator',
23
+ scales=[2, 4, 8, 16, 32],
24
+ ratios=[0.5, 1.0, 2.0],
25
+ strides=[16]),
26
+ bbox_coder=dict(
27
+ type='DeltaXYWHBBoxCoder',
28
+ target_means=[.0, .0, .0, .0],
29
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
30
+ loss_cls=dict(
31
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
32
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
33
+ # model training and testing settings
34
+ train_cfg=dict(
35
+ rpn=dict(
36
+ assigner=dict(
37
+ type='MaxIoUAssigner',
38
+ pos_iou_thr=0.7,
39
+ neg_iou_thr=0.3,
40
+ min_pos_iou=0.3,
41
+ ignore_iof_thr=-1),
42
+ sampler=dict(
43
+ type='RandomSampler',
44
+ num=256,
45
+ pos_fraction=0.5,
46
+ neg_pos_ub=-1,
47
+ add_gt_as_proposals=False),
48
+ allowed_border=0,
49
+ pos_weight=-1,
50
+ debug=False)),
51
+ test_cfg=dict(
52
+ rpn=dict(
53
+ nms_pre=12000,
54
+ max_per_img=2000,
55
+ nms=dict(type='nms', iou_threshold=0.7),
56
+ min_bbox_size=0)))
configs/_base_/models/rpn_r50_fpn.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+
3
+ model = dict(
4
+ type='RPN',
5
+ pretrained='torchvision://resnet50',
6
+ backbone=dict(
7
+ type='ResNet',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ frozen_stages=1,
12
+ norm_cfg=dict(type='BN', requires_grad=True),
13
+ norm_eval=True,
14
+ style='pytorch'),
15
+ neck=dict(
16
+ type='FPN',
17
+ in_channels=[256, 512, 1024, 2048],
18
+ out_channels=256,
19
+ num_outs=5),
20
+ rpn_head=dict(
21
+ type='RPNHead',
22
+ in_channels=256,
23
+ feat_channels=256,
24
+ anchor_generator=dict(
25
+ type='AnchorGenerator',
26
+ scales=[8],
27
+ ratios=[0.5, 1.0, 2.0],
28
+ strides=[4, 8, 16, 32, 64]),
29
+ bbox_coder=dict(
30
+ type='DeltaXYWHBBoxCoder',
31
+ target_means=[.0, .0, .0, .0],
32
+ target_stds=[1.0, 1.0, 1.0, 1.0]),
33
+ loss_cls=dict(
34
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
35
+ loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
36
+ # model training and testing settings
37
+ train_cfg=dict(
38
+ rpn=dict(
39
+ assigner=dict(
40
+ type='MaxIoUAssigner',
41
+ pos_iou_thr=0.7,
42
+ neg_iou_thr=0.3,
43
+ min_pos_iou=0.3,
44
+ ignore_iof_thr=-1),
45
+ sampler=dict(
46
+ type='RandomSampler',
47
+ num=256,
48
+ pos_fraction=0.5,
49
+ neg_pos_ub=-1,
50
+ add_gt_as_proposals=False),
51
+ allowed_border=0,
52
+ pos_weight=-1,
53
+ debug=False)),
54
+ test_cfg=dict(
55
+ rpn=dict(
56
+ nms_pre=2000,
57
+ max_per_img=1000,
58
+ nms=dict(type='nms', iou_threshold=0.7),
59
+ min_bbox_size=0)))
configs/_base_/models/ssd300.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ input_size = 300
3
+ model = dict(
4
+ type='SingleStageDetector',
5
+ pretrained='open-mmlab://vgg16_caffe',
6
+ backbone=dict(
7
+ type='SSDVGG',
8
+ input_size=input_size,
9
+ depth=16,
10
+ with_last_pool=False,
11
+ ceil_mode=True,
12
+ out_indices=(3, 4),
13
+ out_feature_indices=(22, 34),
14
+ l2_norm_scale=20),
15
+ neck=None,
16
+ bbox_head=dict(
17
+ type='SSDHead',
18
+ in_channels=(512, 1024, 512, 256, 256, 256),
19
+ num_classes=80,
20
+ anchor_generator=dict(
21
+ type='SSDAnchorGenerator',
22
+ scale_major=False,
23
+ input_size=input_size,
24
+ basesize_ratio_range=(0.15, 0.9),
25
+ strides=[8, 16, 32, 64, 100, 300],
26
+ ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
27
+ bbox_coder=dict(
28
+ type='DeltaXYWHBBoxCoder',
29
+ target_means=[.0, .0, .0, .0],
30
+ target_stds=[0.1, 0.1, 0.2, 0.2])),
31
+ train_cfg=dict(
32
+ assigner=dict(
33
+ type='MaxIoUAssigner',
34
+ pos_iou_thr=0.5,
35
+ neg_iou_thr=0.5,
36
+ min_pos_iou=0.,
37
+ ignore_iof_thr=-1,
38
+ gt_max_assign_all=False),
39
+ smoothl1_beta=1.,
40
+ allowed_border=-1,
41
+ pos_weight=-1,
42
+ neg_pos_ratio=3,
43
+ debug=False),
44
+ test_cfg=dict(
45
+ nms_pre=1000,
46
+ nms=dict(type='nms', iou_threshold=0.45),
47
+ min_bbox_size=0,
48
+ score_thr=0.02,
49
+ max_per_img=200))
50
+ cudnn_benchmark = True
configs/_base_/schedules/schedule_1x.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # optimizer
2
+ optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
3
+ optimizer_config = dict(grad_clip=None)
4
+ # learning policy
5
+ lr_config = dict(
6
+ policy='step',
7
+ warmup='linear',
8
+ warmup_iters=500,
9
+ warmup_ratio=0.001,
10
+ step=[8, 11])
11
+ runner = dict(type='EpochBasedRunner', max_epochs=12)
configs/_base_/schedules/schedule_20e.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # optimizer
2
+ optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
3
+ optimizer_config = dict(grad_clip=None)
4
+ # learning policy
5
+ lr_config = dict(
6
+ policy='step',
7
+ warmup='linear',
8
+ warmup_iters=500,
9
+ warmup_ratio=0.001,
10
+ step=[16, 19])
11
+ runner = dict(type='EpochBasedRunner', max_epochs=20)