|
import mmcv |
|
import torch |
|
|
|
from mmdet.models.dense_heads import YOLACTHead, YOLACTProtonet, YOLACTSegmHead |
|
|
|
|
|
def test_yolact_head_loss(): |
|
"""Tests yolact head losses when truth is empty and non-empty.""" |
|
s = 550 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
train_cfg = mmcv.Config( |
|
dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.4, |
|
min_pos_iou=0., |
|
ignore_iof_thr=-1, |
|
gt_max_assign_all=False), |
|
smoothl1_beta=1., |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
neg_pos_ratio=3, |
|
debug=False, |
|
min_gt_box_wh=[4.0, 4.0])) |
|
bbox_head = YOLACTHead( |
|
num_classes=80, |
|
in_channels=256, |
|
feat_channels=256, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
octave_base_scale=3, |
|
scales_per_octave=1, |
|
base_sizes=[8, 16, 32, 64, 128], |
|
ratios=[0.5, 1.0, 2.0], |
|
strides=[550.0 / x for x in [69, 35, 18, 9, 5]], |
|
centers=[(550 * 0.5 / x, 550 * 0.5 / x) |
|
for x in [69, 35, 18, 9, 5]]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
use_sigmoid=False, |
|
reduction='none', |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5), |
|
num_head_convs=1, |
|
num_protos=32, |
|
use_ohem=True, |
|
train_cfg=train_cfg) |
|
segm_head = YOLACTSegmHead( |
|
in_channels=256, |
|
num_classes=80, |
|
loss_segm=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)) |
|
mask_head = YOLACTProtonet( |
|
num_classes=80, |
|
in_channels=256, |
|
num_protos=32, |
|
max_masks_to_train=100, |
|
loss_mask_weight=6.125) |
|
feat = [ |
|
torch.rand(1, 256, feat_size, feat_size) |
|
for feat_size in [69, 35, 18, 9, 5] |
|
] |
|
cls_score, bbox_pred, coeff_pred = bbox_head.forward(feat) |
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_masks = [torch.empty((0, 550, 550))] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses, sampling_results = bbox_head.loss( |
|
cls_score, |
|
bbox_pred, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
|
|
|
|
empty_cls_loss = sum(empty_gt_losses['loss_cls']) |
|
empty_box_loss = sum(empty_gt_losses['loss_bbox']) |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_box_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
segm_head_outs = segm_head(feat[0]) |
|
empty_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels) |
|
mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas, |
|
sampling_results) |
|
empty_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas, |
|
sampling_results) |
|
|
|
empty_segm_loss = sum(empty_segm_loss['loss_segm']) |
|
empty_mask_loss = sum(empty_mask_loss['loss_mask']) |
|
assert empty_segm_loss.item() == 0, ( |
|
'there should be no segm loss when there are no true boxes') |
|
assert empty_mask_loss == 0, ( |
|
'there should be no mask loss when there are no true boxes') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
gt_masks = [(torch.rand((1, 550, 550)) > 0.5).float()] |
|
|
|
one_gt_losses, sampling_results = bbox_head.loss( |
|
cls_score, |
|
bbox_pred, |
|
gt_bboxes, |
|
gt_labels, |
|
img_metas, |
|
gt_bboxes_ignore=gt_bboxes_ignore) |
|
one_gt_cls_loss = sum(one_gt_losses['loss_cls']) |
|
one_gt_box_loss = sum(one_gt_losses['loss_bbox']) |
|
assert one_gt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert one_gt_box_loss.item() > 0, 'box loss should be non-zero' |
|
|
|
one_gt_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels) |
|
mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas, |
|
sampling_results) |
|
one_gt_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes, |
|
img_metas, sampling_results) |
|
one_gt_segm_loss = sum(one_gt_segm_loss['loss_segm']) |
|
one_gt_mask_loss = sum(one_gt_mask_loss['loss_mask']) |
|
assert one_gt_segm_loss.item() > 0, 'segm loss should be non-zero' |
|
assert one_gt_mask_loss.item() > 0, 'mask loss should be non-zero' |
|
|