File size: 5,199 Bytes
e26e560 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import mmcv
import torch
from mmdet.models.dense_heads import YOLACTHead, YOLACTProtonet, YOLACTSegmHead
def test_yolact_head_loss():
"""Tests yolact head losses when truth is empty and non-empty."""
s = 550
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
train_cfg = mmcv.Config(
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.4,
min_pos_iou=0.,
ignore_iof_thr=-1,
gt_max_assign_all=False),
smoothl1_beta=1.,
allowed_border=-1,
pos_weight=-1,
neg_pos_ratio=3,
debug=False,
min_gt_box_wh=[4.0, 4.0]))
bbox_head = YOLACTHead(
num_classes=80,
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
octave_base_scale=3,
scales_per_octave=1,
base_sizes=[8, 16, 32, 64, 128],
ratios=[0.5, 1.0, 2.0],
strides=[550.0 / x for x in [69, 35, 18, 9, 5]],
centers=[(550 * 0.5 / x, 550 * 0.5 / x)
for x in [69, 35, 18, 9, 5]]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
reduction='none',
loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5),
num_head_convs=1,
num_protos=32,
use_ohem=True,
train_cfg=train_cfg)
segm_head = YOLACTSegmHead(
in_channels=256,
num_classes=80,
loss_segm=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0))
mask_head = YOLACTProtonet(
num_classes=80,
in_channels=256,
num_protos=32,
max_masks_to_train=100,
loss_mask_weight=6.125)
feat = [
torch.rand(1, 256, feat_size, feat_size)
for feat_size in [69, 35, 18, 9, 5]
]
cls_score, bbox_pred, coeff_pred = bbox_head.forward(feat)
# Test that empty ground truth encourages the network to predict background
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_masks = [torch.empty((0, 550, 550))]
gt_bboxes_ignore = None
empty_gt_losses, sampling_results = bbox_head.loss(
cls_score,
bbox_pred,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero but there should
# be no box loss.
empty_cls_loss = sum(empty_gt_losses['loss_cls'])
empty_box_loss = sum(empty_gt_losses['loss_bbox'])
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_box_loss.item() == 0, (
'there should be no box loss when there are no true boxes')
# Test segm head and mask head
segm_head_outs = segm_head(feat[0])
empty_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels)
mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas,
sampling_results)
empty_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas,
sampling_results)
# When there is no truth, the segm and mask loss should be zero.
empty_segm_loss = sum(empty_segm_loss['loss_segm'])
empty_mask_loss = sum(empty_mask_loss['loss_mask'])
assert empty_segm_loss.item() == 0, (
'there should be no segm loss when there are no true boxes')
assert empty_mask_loss == 0, (
'there should be no mask loss when there are no true boxes')
# When truth is non-empty then cls, box, mask, segm loss should be
# nonzero for random inputs.
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
gt_masks = [(torch.rand((1, 550, 550)) > 0.5).float()]
one_gt_losses, sampling_results = bbox_head.loss(
cls_score,
bbox_pred,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=gt_bboxes_ignore)
one_gt_cls_loss = sum(one_gt_losses['loss_cls'])
one_gt_box_loss = sum(one_gt_losses['loss_bbox'])
assert one_gt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert one_gt_box_loss.item() > 0, 'box loss should be non-zero'
one_gt_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels)
mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas,
sampling_results)
one_gt_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes,
img_metas, sampling_results)
one_gt_segm_loss = sum(one_gt_segm_loss['loss_segm'])
one_gt_mask_loss = sum(one_gt_mask_loss['loss_mask'])
assert one_gt_segm_loss.item() > 0, 'segm loss should be non-zero'
assert one_gt_mask_loss.item() > 0, 'mask loss should be non-zero'
|