File size: 5,199 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import mmcv
import torch

from mmdet.models.dense_heads import YOLACTHead, YOLACTProtonet, YOLACTSegmHead


def test_yolact_head_loss():
    """Tests yolact head losses when truth is empty and non-empty."""
    s = 550
    img_metas = [{
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3)
    }]
    train_cfg = mmcv.Config(
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.5,
                neg_iou_thr=0.4,
                min_pos_iou=0.,
                ignore_iof_thr=-1,
                gt_max_assign_all=False),
            smoothl1_beta=1.,
            allowed_border=-1,
            pos_weight=-1,
            neg_pos_ratio=3,
            debug=False,
            min_gt_box_wh=[4.0, 4.0]))
    bbox_head = YOLACTHead(
        num_classes=80,
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            octave_base_scale=3,
            scales_per_octave=1,
            base_sizes=[8, 16, 32, 64, 128],
            ratios=[0.5, 1.0, 2.0],
            strides=[550.0 / x for x in [69, 35, 18, 9, 5]],
            centers=[(550 * 0.5 / x, 550 * 0.5 / x)
                     for x in [69, 35, 18, 9, 5]]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2]),
        loss_cls=dict(
            type='CrossEntropyLoss',
            use_sigmoid=False,
            reduction='none',
            loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.5),
        num_head_convs=1,
        num_protos=32,
        use_ohem=True,
        train_cfg=train_cfg)
    segm_head = YOLACTSegmHead(
        in_channels=256,
        num_classes=80,
        loss_segm=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0))
    mask_head = YOLACTProtonet(
        num_classes=80,
        in_channels=256,
        num_protos=32,
        max_masks_to_train=100,
        loss_mask_weight=6.125)
    feat = [
        torch.rand(1, 256, feat_size, feat_size)
        for feat_size in [69, 35, 18, 9, 5]
    ]
    cls_score, bbox_pred, coeff_pred = bbox_head.forward(feat)
    # Test that empty ground truth encourages the network to predict background
    gt_bboxes = [torch.empty((0, 4))]
    gt_labels = [torch.LongTensor([])]
    gt_masks = [torch.empty((0, 550, 550))]
    gt_bboxes_ignore = None
    empty_gt_losses, sampling_results = bbox_head.loss(
        cls_score,
        bbox_pred,
        gt_bboxes,
        gt_labels,
        img_metas,
        gt_bboxes_ignore=gt_bboxes_ignore)
    # When there is no truth, the cls loss should be nonzero but there should
    # be no box loss.
    empty_cls_loss = sum(empty_gt_losses['loss_cls'])
    empty_box_loss = sum(empty_gt_losses['loss_bbox'])
    assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert empty_box_loss.item() == 0, (
        'there should be no box loss when there are no true boxes')

    # Test segm head and mask head
    segm_head_outs = segm_head(feat[0])
    empty_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels)
    mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas,
                          sampling_results)
    empty_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes, img_metas,
                                     sampling_results)
    # When there is no truth, the segm and mask loss should be zero.
    empty_segm_loss = sum(empty_segm_loss['loss_segm'])
    empty_mask_loss = sum(empty_mask_loss['loss_mask'])
    assert empty_segm_loss.item() == 0, (
        'there should be no segm loss when there are no true boxes')
    assert empty_mask_loss == 0, (
        'there should be no mask loss when there are no true boxes')

    # When truth is non-empty then cls, box, mask, segm loss should be
    # nonzero for random inputs.
    gt_bboxes = [
        torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
    ]
    gt_labels = [torch.LongTensor([2])]
    gt_masks = [(torch.rand((1, 550, 550)) > 0.5).float()]

    one_gt_losses, sampling_results = bbox_head.loss(
        cls_score,
        bbox_pred,
        gt_bboxes,
        gt_labels,
        img_metas,
        gt_bboxes_ignore=gt_bboxes_ignore)
    one_gt_cls_loss = sum(one_gt_losses['loss_cls'])
    one_gt_box_loss = sum(one_gt_losses['loss_bbox'])
    assert one_gt_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert one_gt_box_loss.item() > 0, 'box loss should be non-zero'

    one_gt_segm_loss = segm_head.loss(segm_head_outs, gt_masks, gt_labels)
    mask_pred = mask_head(feat[0], coeff_pred, gt_bboxes, img_metas,
                          sampling_results)
    one_gt_mask_loss = mask_head.loss(mask_pred, gt_masks, gt_bboxes,
                                      img_metas, sampling_results)
    one_gt_segm_loss = sum(one_gt_segm_loss['loss_segm'])
    one_gt_mask_loss = sum(one_gt_mask_loss['loss_mask'])
    assert one_gt_segm_loss.item() > 0, 'segm loss should be non-zero'
    assert one_gt_mask_loss.item() > 0, 'mask loss should be non-zero'