|
import mmcv |
|
import torch |
|
|
|
from mmdet.models.dense_heads import VFNetHead |
|
|
|
|
|
def test_vfnet_head_loss(): |
|
"""Tests vfnet head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
train_cfg = mmcv.Config( |
|
dict( |
|
assigner=dict(type='ATSSAssigner', topk=9), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False)) |
|
|
|
self = VFNetHead( |
|
num_classes=4, |
|
in_channels=1, |
|
train_cfg=train_cfg, |
|
loss_cls=dict(type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0)) |
|
if torch.cuda.is_available(): |
|
self.cuda() |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size).cuda() |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
cls_scores, bbox_preds, bbox_preds_refine = self.forward(feat) |
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4)).cuda()] |
|
gt_labels = [torch.LongTensor([]).cuda()] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses = self.loss(cls_scores, bbox_preds, bbox_preds_refine, |
|
gt_bboxes, gt_labels, img_metas, |
|
gt_bboxes_ignore) |
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_box_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]).cuda(), |
|
] |
|
gt_labels = [torch.LongTensor([2]).cuda()] |
|
one_gt_losses = self.loss(cls_scores, bbox_preds, bbox_preds_refine, |
|
gt_bboxes, gt_labels, img_metas, |
|
gt_bboxes_ignore) |
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_box_loss.item() > 0, 'box loss should be non-zero' |
|
|