import mmcv import torch from mmdet.models.dense_heads import VFNetHead def test_vfnet_head_loss(): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9), allowed_border=-1, pos_weight=-1, debug=False)) # since Focal Loss is not supported on CPU self = VFNetHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict(type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0)) if torch.cuda.is_available(): self.cuda() feat = [ torch.rand(1, 1, s // feat_size, s // feat_size).cuda() for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds, bbox_preds_refine = self.forward(feat) # Test that empty ground truth encourages the network to predict # background gt_bboxes = [torch.empty((0, 4)).cuda()] gt_labels = [torch.LongTensor([]).cuda()] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, bbox_preds_refine, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero but there # should be no box loss. empty_cls_loss = empty_gt_losses['loss_cls'] empty_box_loss = empty_gt_losses['loss_bbox'] assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]).cuda(), ] gt_labels = [torch.LongTensor([2]).cuda()] one_gt_losses = self.loss(cls_scores, bbox_preds, bbox_preds_refine, gt_bboxes, gt_labels, img_metas, gt_bboxes_ignore) onegt_cls_loss = one_gt_losses['loss_cls'] onegt_box_loss = one_gt_losses['loss_bbox'] assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero'