|
import mmcv |
|
import numpy as np |
|
import torch |
|
|
|
from mmdet.models.dense_heads import PAAHead, paa_head |
|
from mmdet.models.dense_heads.paa_head import levels_to_images |
|
|
|
|
|
def test_paa_head_loss(): |
|
"""Tests paa head loss when truth is empty and non-empty.""" |
|
|
|
class mock_skm(object): |
|
|
|
def GaussianMixture(self, *args, **kwargs): |
|
return self |
|
|
|
def fit(self, loss): |
|
pass |
|
|
|
def predict(self, loss): |
|
components = np.zeros_like(loss, dtype=np.long) |
|
return components.reshape(-1) |
|
|
|
def score_samples(self, loss): |
|
scores = np.random.random(len(loss)) |
|
return scores |
|
|
|
paa_head.skm = mock_skm() |
|
|
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
train_cfg = mmcv.Config( |
|
dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.1, |
|
neg_iou_thr=0.1, |
|
min_pos_iou=0, |
|
ignore_iof_thr=-1), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False)) |
|
|
|
self = PAAHead( |
|
num_classes=4, |
|
in_channels=1, |
|
train_cfg=train_cfg, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=1.3), |
|
loss_centerness=dict( |
|
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)) |
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
self.init_weights() |
|
cls_scores, bbox_preds, iou_preds = self(feat) |
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_bboxes_ignore = None |
|
empty_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes, |
|
gt_labels, img_metas, gt_bboxes_ignore) |
|
|
|
|
|
empty_cls_loss = empty_gt_losses['loss_cls'] |
|
empty_box_loss = empty_gt_losses['loss_bbox'] |
|
empty_iou_loss = empty_gt_losses['loss_iou'] |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_box_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
assert empty_iou_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
one_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes, |
|
gt_labels, img_metas, gt_bboxes_ignore) |
|
onegt_cls_loss = one_gt_losses['loss_cls'] |
|
onegt_box_loss = one_gt_losses['loss_bbox'] |
|
onegt_iou_loss = one_gt_losses['loss_iou'] |
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_box_loss.item() > 0, 'box loss should be non-zero' |
|
assert onegt_iou_loss.item() > 0, 'box loss should be non-zero' |
|
n, c, h, w = 10, 4, 20, 20 |
|
mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)] |
|
results = levels_to_images(mlvl_tensor) |
|
assert len(results) == n |
|
assert results[0].size() == (h * w * 5, c) |
|
assert self.with_score_voting |
|
cls_scores = [torch.ones(2, 4, 5, 5)] |
|
bbox_preds = [torch.ones(2, 4, 5, 5)] |
|
iou_preds = [torch.ones(2, 1, 5, 5)] |
|
mlvl_anchors = [torch.ones(2, 5 * 5, 4)] |
|
img_shape = None |
|
scale_factor = [0.5, 0.5] |
|
cfg = mmcv.Config( |
|
dict( |
|
nms_pre=1000, |
|
min_bbox_size=0, |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.6), |
|
max_per_img=100)) |
|
rescale = False |
|
self._get_bboxes( |
|
cls_scores, |
|
bbox_preds, |
|
iou_preds, |
|
mlvl_anchors, |
|
img_shape, |
|
scale_factor, |
|
cfg, |
|
rescale=rescale) |
|
|