File size: 4,201 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import mmcv
import numpy as np
import torch

from mmdet.models.dense_heads import PAAHead, paa_head
from mmdet.models.dense_heads.paa_head import levels_to_images


def test_paa_head_loss():
    """Tests paa head loss when truth is empty and non-empty."""

    class mock_skm(object):

        def GaussianMixture(self, *args, **kwargs):
            return self

        def fit(self, loss):
            pass

        def predict(self, loss):
            components = np.zeros_like(loss, dtype=np.long)
            return components.reshape(-1)

        def score_samples(self, loss):
            scores = np.random.random(len(loss))
            return scores

    paa_head.skm = mock_skm()

    s = 256
    img_metas = [{
        'img_shape': (s, s, 3),
        'scale_factor': 1,
        'pad_shape': (s, s, 3)
    }]
    train_cfg = mmcv.Config(
        dict(
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.1,
                neg_iou_thr=0.1,
                min_pos_iou=0,
                ignore_iof_thr=-1),
            allowed_border=-1,
            pos_weight=-1,
            debug=False))
    # since Focal Loss is not supported on CPU
    self = PAAHead(
        num_classes=4,
        in_channels=1,
        train_cfg=train_cfg,
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
    feat = [
        torch.rand(1, 1, s // feat_size, s // feat_size)
        for feat_size in [4, 8, 16, 32, 64]
    ]
    self.init_weights()
    cls_scores, bbox_preds, iou_preds = self(feat)
    # Test that empty ground truth encourages the network to predict background
    gt_bboxes = [torch.empty((0, 4))]
    gt_labels = [torch.LongTensor([])]
    gt_bboxes_ignore = None
    empty_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes,
                                gt_labels, img_metas, gt_bboxes_ignore)
    # When there is no truth, the cls loss should be nonzero but there should
    # be no box loss.
    empty_cls_loss = empty_gt_losses['loss_cls']
    empty_box_loss = empty_gt_losses['loss_bbox']
    empty_iou_loss = empty_gt_losses['loss_iou']
    assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert empty_box_loss.item() == 0, (
        'there should be no box loss when there are no true boxes')
    assert empty_iou_loss.item() == 0, (
        'there should be no box loss when there are no true boxes')

    # When truth is non-empty then both cls and box loss should be nonzero for
    # random inputs
    gt_bboxes = [
        torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
    ]
    gt_labels = [torch.LongTensor([2])]
    one_gt_losses = self.loss(cls_scores, bbox_preds, iou_preds, gt_bboxes,
                              gt_labels, img_metas, gt_bboxes_ignore)
    onegt_cls_loss = one_gt_losses['loss_cls']
    onegt_box_loss = one_gt_losses['loss_bbox']
    onegt_iou_loss = one_gt_losses['loss_iou']
    assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
    assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
    assert onegt_iou_loss.item() > 0, 'box loss should be non-zero'
    n, c, h, w = 10, 4, 20, 20
    mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)]
    results = levels_to_images(mlvl_tensor)
    assert len(results) == n
    assert results[0].size() == (h * w * 5, c)
    assert self.with_score_voting
    cls_scores = [torch.ones(2, 4, 5, 5)]
    bbox_preds = [torch.ones(2, 4, 5, 5)]
    iou_preds = [torch.ones(2, 1, 5, 5)]
    mlvl_anchors = [torch.ones(2, 5 * 5, 4)]
    img_shape = None
    scale_factor = [0.5, 0.5]
    cfg = mmcv.Config(
        dict(
            nms_pre=1000,
            min_bbox_size=0,
            score_thr=0.05,
            nms=dict(type='nms', iou_threshold=0.6),
            max_per_img=100))
    rescale = False
    self._get_bboxes(
        cls_scores,
        bbox_preds,
        iou_preds,
        mlvl_anchors,
        img_shape,
        scale_factor,
        cfg,
        rescale=rescale)