|
import mmcv |
|
import torch |
|
|
|
from mmdet.models.dense_heads import GFLHead, LDHead |
|
|
|
|
|
def test_ld_head_loss(): |
|
"""Tests vfnet head loss when truth is empty and non-empty.""" |
|
s = 256 |
|
img_metas = [{ |
|
'img_shape': (s, s, 3), |
|
'scale_factor': 1, |
|
'pad_shape': (s, s, 3) |
|
}] |
|
train_cfg = mmcv.Config( |
|
dict( |
|
assigner=dict(type='ATSSAssigner', topk=9, ignore_iof_thr=0.1), |
|
allowed_border=-1, |
|
pos_weight=-1, |
|
debug=False)) |
|
|
|
self = LDHead( |
|
num_classes=4, |
|
in_channels=1, |
|
train_cfg=train_cfg, |
|
loss_ld=dict(type='KnowledgeDistillationKLDivLoss', loss_weight=1.0), |
|
loss_cls=dict( |
|
type='QualityFocalLoss', |
|
use_sigmoid=True, |
|
beta=2.0, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
ratios=[1.0], |
|
octave_base_scale=8, |
|
scales_per_octave=1, |
|
strides=[8, 16, 32, 64, 128])) |
|
|
|
teacher_model = GFLHead( |
|
num_classes=4, |
|
in_channels=1, |
|
train_cfg=train_cfg, |
|
loss_cls=dict( |
|
type='QualityFocalLoss', |
|
use_sigmoid=True, |
|
beta=2.0, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='GIoULoss', loss_weight=2.0), |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
ratios=[1.0], |
|
octave_base_scale=8, |
|
scales_per_octave=1, |
|
strides=[8, 16, 32, 64, 128])) |
|
|
|
feat = [ |
|
torch.rand(1, 1, s // feat_size, s // feat_size) |
|
for feat_size in [4, 8, 16, 32, 64] |
|
] |
|
cls_scores, bbox_preds = self.forward(feat) |
|
rand_soft_target = teacher_model.forward(feat)[1] |
|
|
|
|
|
|
|
gt_bboxes = [torch.empty((0, 4))] |
|
gt_labels = [torch.LongTensor([])] |
|
gt_bboxes_ignore = None |
|
|
|
empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, |
|
rand_soft_target, img_metas, gt_bboxes_ignore) |
|
|
|
|
|
empty_cls_loss = sum(empty_gt_losses['loss_cls']) |
|
empty_box_loss = sum(empty_gt_losses['loss_bbox']) |
|
empty_ld_loss = sum(empty_gt_losses['loss_ld']) |
|
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert empty_box_loss.item() == 0, ( |
|
'there should be no box loss when there are no true boxes') |
|
assert empty_ld_loss.item() >= 0, 'ld loss should be non-negative' |
|
|
|
|
|
|
|
gt_bboxes = [ |
|
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), |
|
] |
|
gt_labels = [torch.LongTensor([2])] |
|
one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, |
|
rand_soft_target, img_metas, gt_bboxes_ignore) |
|
onegt_cls_loss = sum(one_gt_losses['loss_cls']) |
|
onegt_box_loss = sum(one_gt_losses['loss_bbox']) |
|
|
|
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert onegt_box_loss.item() > 0, 'box loss should be non-zero' |
|
|
|
gt_bboxes_ignore = gt_bboxes |
|
|
|
|
|
|
|
ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, |
|
rand_soft_target, img_metas, gt_bboxes_ignore) |
|
ignore_cls_loss = sum(ignore_gt_losses['loss_cls']) |
|
ignore_box_loss = sum(ignore_gt_losses['loss_bbox']) |
|
|
|
assert ignore_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert ignore_box_loss.item() == 0, 'gt bbox ignored loss should be zero' |
|
|
|
|
|
|
|
gt_bboxes_ignore = [torch.randn(1, 4)] |
|
|
|
not_ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, |
|
gt_labels, rand_soft_target, img_metas, |
|
gt_bboxes_ignore) |
|
not_ignore_cls_loss = sum(not_ignore_gt_losses['loss_cls']) |
|
not_ignore_box_loss = sum(not_ignore_gt_losses['loss_bbox']) |
|
|
|
assert not_ignore_cls_loss.item() > 0, 'cls loss should be non-zero' |
|
assert not_ignore_box_loss.item( |
|
) > 0, 'gt bbox not ignored loss should be non-zero' |
|
|