ZJF-Thunder
添加文件
e26e560
import mmcv
import torch
from mmdet.models.dense_heads import GFLHead, LDHead
def test_ld_head_loss():
"""Tests vfnet head loss when truth is empty and non-empty."""
s = 256
img_metas = [{
'img_shape': (s, s, 3),
'scale_factor': 1,
'pad_shape': (s, s, 3)
}]
train_cfg = mmcv.Config(
dict(
assigner=dict(type='ATSSAssigner', topk=9, ignore_iof_thr=0.1),
allowed_border=-1,
pos_weight=-1,
debug=False))
self = LDHead(
num_classes=4,
in_channels=1,
train_cfg=train_cfg,
loss_ld=dict(type='KnowledgeDistillationKLDivLoss', loss_weight=1.0),
loss_cls=dict(
type='QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]))
teacher_model = GFLHead(
num_classes=4,
in_channels=1,
train_cfg=train_cfg,
loss_cls=dict(
type='QualityFocalLoss',
use_sigmoid=True,
beta=2.0,
loss_weight=1.0),
loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
anchor_generator=dict(
type='AnchorGenerator',
ratios=[1.0],
octave_base_scale=8,
scales_per_octave=1,
strides=[8, 16, 32, 64, 128]))
feat = [
torch.rand(1, 1, s // feat_size, s // feat_size)
for feat_size in [4, 8, 16, 32, 64]
]
cls_scores, bbox_preds = self.forward(feat)
rand_soft_target = teacher_model.forward(feat)[1]
# Test that empty ground truth encourages the network to predict
# background
gt_bboxes = [torch.empty((0, 4))]
gt_labels = [torch.LongTensor([])]
gt_bboxes_ignore = None
empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
rand_soft_target, img_metas, gt_bboxes_ignore)
# When there is no truth, the cls loss should be nonzero, ld loss should
# be non-negative but there should be no box loss.
empty_cls_loss = sum(empty_gt_losses['loss_cls'])
empty_box_loss = sum(empty_gt_losses['loss_bbox'])
empty_ld_loss = sum(empty_gt_losses['loss_ld'])
assert empty_cls_loss.item() > 0, 'cls loss should be non-zero'
assert empty_box_loss.item() == 0, (
'there should be no box loss when there are no true boxes')
assert empty_ld_loss.item() >= 0, 'ld loss should be non-negative'
# When truth is non-empty then both cls and box loss should be nonzero
# for random inputs
gt_bboxes = [
torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
]
gt_labels = [torch.LongTensor([2])]
one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
rand_soft_target, img_metas, gt_bboxes_ignore)
onegt_cls_loss = sum(one_gt_losses['loss_cls'])
onegt_box_loss = sum(one_gt_losses['loss_bbox'])
assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero'
assert onegt_box_loss.item() > 0, 'box loss should be non-zero'
gt_bboxes_ignore = gt_bboxes
# When truth is non-empty but ignored then the cls loss should be nonzero,
# but there should be no box loss.
ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels,
rand_soft_target, img_metas, gt_bboxes_ignore)
ignore_cls_loss = sum(ignore_gt_losses['loss_cls'])
ignore_box_loss = sum(ignore_gt_losses['loss_bbox'])
assert ignore_cls_loss.item() > 0, 'cls loss should be non-zero'
assert ignore_box_loss.item() == 0, 'gt bbox ignored loss should be zero'
# When truth is non-empty and not ignored then both cls and box loss should
# be nonzero for random inputs
gt_bboxes_ignore = [torch.randn(1, 4)]
not_ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes,
gt_labels, rand_soft_target, img_metas,
gt_bboxes_ignore)
not_ignore_cls_loss = sum(not_ignore_gt_losses['loss_cls'])
not_ignore_box_loss = sum(not_ignore_gt_losses['loss_bbox'])
assert not_ignore_cls_loss.item() > 0, 'cls loss should be non-zero'
assert not_ignore_box_loss.item(
) > 0, 'gt bbox not ignored loss should be non-zero'