import mmcv import torch from mmdet.models.dense_heads import GFLHead, LDHead def test_ld_head_loss(): """Tests vfnet head loss when truth is empty and non-empty.""" s = 256 img_metas = [{ 'img_shape': (s, s, 3), 'scale_factor': 1, 'pad_shape': (s, s, 3) }] train_cfg = mmcv.Config( dict( assigner=dict(type='ATSSAssigner', topk=9, ignore_iof_thr=0.1), allowed_border=-1, pos_weight=-1, debug=False)) self = LDHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_ld=dict(type='KnowledgeDistillationKLDivLoss', loss_weight=1.0), loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) teacher_model = GFLHead( num_classes=4, in_channels=1, train_cfg=train_cfg, loss_cls=dict( type='QualityFocalLoss', use_sigmoid=True, beta=2.0, loss_weight=1.0), loss_bbox=dict(type='GIoULoss', loss_weight=2.0), anchor_generator=dict( type='AnchorGenerator', ratios=[1.0], octave_base_scale=8, scales_per_octave=1, strides=[8, 16, 32, 64, 128])) feat = [ torch.rand(1, 1, s // feat_size, s // feat_size) for feat_size in [4, 8, 16, 32, 64] ] cls_scores, bbox_preds = self.forward(feat) rand_soft_target = teacher_model.forward(feat)[1] # Test that empty ground truth encourages the network to predict # background gt_bboxes = [torch.empty((0, 4))] gt_labels = [torch.LongTensor([])] gt_bboxes_ignore = None empty_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) # When there is no truth, the cls loss should be nonzero, ld loss should # be non-negative but there should be no box loss. empty_cls_loss = sum(empty_gt_losses['loss_cls']) empty_box_loss = sum(empty_gt_losses['loss_bbox']) empty_ld_loss = sum(empty_gt_losses['loss_ld']) assert empty_cls_loss.item() > 0, 'cls loss should be non-zero' assert empty_box_loss.item() == 0, ( 'there should be no box loss when there are no true boxes') assert empty_ld_loss.item() >= 0, 'ld loss should be non-negative' # When truth is non-empty then both cls and box loss should be nonzero # for random inputs gt_bboxes = [ torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]), ] gt_labels = [torch.LongTensor([2])] one_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) onegt_cls_loss = sum(one_gt_losses['loss_cls']) onegt_box_loss = sum(one_gt_losses['loss_bbox']) assert onegt_cls_loss.item() > 0, 'cls loss should be non-zero' assert onegt_box_loss.item() > 0, 'box loss should be non-zero' gt_bboxes_ignore = gt_bboxes # When truth is non-empty but ignored then the cls loss should be nonzero, # but there should be no box loss. ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) ignore_cls_loss = sum(ignore_gt_losses['loss_cls']) ignore_box_loss = sum(ignore_gt_losses['loss_bbox']) assert ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert ignore_box_loss.item() == 0, 'gt bbox ignored loss should be zero' # When truth is non-empty and not ignored then both cls and box loss should # be nonzero for random inputs gt_bboxes_ignore = [torch.randn(1, 4)] not_ignore_gt_losses = self.loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, rand_soft_target, img_metas, gt_bboxes_ignore) not_ignore_cls_loss = sum(not_ignore_gt_losses['loss_cls']) not_ignore_box_loss = sum(not_ignore_gt_losses['loss_bbox']) assert not_ignore_cls_loss.item() > 0, 'cls loss should be non-zero' assert not_ignore_box_loss.item( ) > 0, 'gt bbox not ignored loss should be non-zero'