|
import pytest |
|
import torch |
|
from mmcv import assert_params_all_zeros |
|
from mmcv.ops import DeformConv2dPack |
|
from torch.nn.modules import AvgPool2d, GroupNorm |
|
from torch.nn.modules.batchnorm import _BatchNorm |
|
|
|
from mmdet.models.backbones import ResNet, ResNetV1d |
|
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck |
|
from mmdet.models.utils import ResLayer, SimplifiedBasicBlock |
|
from .utils import check_norm_state, is_block, is_norm |
|
|
|
|
|
def test_resnet_basic_block(): |
|
with pytest.raises(AssertionError): |
|
|
|
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) |
|
BasicBlock(64, 64, dcn=dcn) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
BasicBlock(64, 64, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2') |
|
] |
|
BasicBlock(64, 64, plugins=plugins) |
|
|
|
|
|
block = BasicBlock(64, 64) |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 64 |
|
assert block.conv1.kernel_size == (3, 3) |
|
assert block.conv2.in_channels == 64 |
|
assert block.conv2.out_channels == 64 |
|
assert block.conv2.kernel_size == (3, 3) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
block = BasicBlock(64, 64, with_cp=True) |
|
assert block.with_cp |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
def test_resnet_bottleneck(): |
|
with pytest.raises(AssertionError): |
|
|
|
Bottleneck(64, 64, style='tensorflow') |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv4') |
|
] |
|
Bottleneck(64, 16, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
Bottleneck(64, 16, plugins=plugins) |
|
|
|
with pytest.raises(KeyError): |
|
|
|
plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')] |
|
Bottleneck(64, 16, plugins=plugins) |
|
|
|
|
|
block = Bottleneck(64, 16, with_cp=True) |
|
assert block.with_cp |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
block = Bottleneck(64, 64, stride=2, style='pytorch') |
|
assert block.conv1.stride == (1, 1) |
|
assert block.conv2.stride == (2, 2) |
|
block = Bottleneck(64, 64, stride=2, style='caffe') |
|
assert block.conv1.stride == (2, 2) |
|
assert block.conv2.stride == (1, 1) |
|
|
|
|
|
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) |
|
with pytest.raises(AssertionError): |
|
Bottleneck(64, 64, dcn=dcn, conv_cfg=dict(type='Conv')) |
|
block = Bottleneck(64, 64, dcn=dcn) |
|
assert isinstance(block.conv2, DeformConv2dPack) |
|
|
|
|
|
block = Bottleneck(64, 16) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
block = Bottleneck(64, 16, plugins=plugins) |
|
assert block.context_block.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2') |
|
] |
|
block = Bottleneck(64, 16, plugins=plugins) |
|
assert block.gen_attention_block.in_channels == 16 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2'), |
|
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
block = Bottleneck(64, 16, plugins=plugins) |
|
assert block.gen_attention_block.in_channels == 16 |
|
assert block.nonlocal_block.in_channels == 16 |
|
assert block.context_block.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), |
|
position='after_conv2'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), |
|
position='after_conv3'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3), |
|
position='after_conv3') |
|
] |
|
block = Bottleneck(64, 16, plugins=plugins) |
|
assert block.context_block1.in_channels == 16 |
|
assert block.context_block2.in_channels == 64 |
|
assert block.context_block3.in_channels == 64 |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
def test_simplied_basic_block(): |
|
with pytest.raises(AssertionError): |
|
|
|
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) |
|
SimplifiedBasicBlock(64, 64, dcn=dcn) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
position='after_conv3') |
|
] |
|
SimplifiedBasicBlock(64, 64, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
position='after_conv2') |
|
] |
|
SimplifiedBasicBlock(64, 64, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
SimplifiedBasicBlock(64, 64, with_cp=True) |
|
|
|
|
|
block = SimplifiedBasicBlock(64, 64) |
|
assert block.conv1.in_channels == 64 |
|
assert block.conv1.out_channels == 64 |
|
assert block.conv1.kernel_size == (3, 3) |
|
assert block.conv2.in_channels == 64 |
|
assert block.conv2.out_channels == 64 |
|
assert block.conv2.kernel_size == (3, 3) |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
block = SimplifiedBasicBlock(64, 64, norm_cfg=None) |
|
assert block.norm1 is None |
|
assert block.norm2 is None |
|
x_out = block(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
def test_resnet_res_layer(): |
|
|
|
layer = ResLayer(Bottleneck, 64, 16, 3) |
|
assert len(layer) == 3 |
|
assert layer[0].conv1.in_channels == 64 |
|
assert layer[0].conv1.out_channels == 16 |
|
for i in range(1, len(layer)): |
|
assert layer[i].conv1.in_channels == 64 |
|
assert layer[i].conv1.out_channels == 16 |
|
for i in range(len(layer)): |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == torch.Size([1, 64, 56, 56]) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 64, 64, 3) |
|
assert layer[0].downsample[0].out_channels == 256 |
|
for i in range(1, len(layer)): |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == torch.Size([1, 256, 56, 56]) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2) |
|
assert layer[0].downsample[0].out_channels == 256 |
|
assert layer[0].downsample[0].stride == (2, 2) |
|
for i in range(1, len(layer)): |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == torch.Size([1, 256, 28, 28]) |
|
|
|
|
|
layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True) |
|
assert isinstance(layer[0].downsample[0], AvgPool2d) |
|
assert layer[0].downsample[1].out_channels == 256 |
|
assert layer[0].downsample[1].stride == (1, 1) |
|
for i in range(1, len(layer)): |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == torch.Size([1, 256, 28, 28]) |
|
|
|
|
|
layer = ResLayer(BasicBlock, 64, 64, 3, stride=2, downsample_first=False) |
|
assert layer[2].downsample[0].out_channels == 64 |
|
assert layer[2].downsample[0].stride == (2, 2) |
|
for i in range(len(layer) - 1): |
|
assert layer[i].downsample is None |
|
x = torch.randn(1, 64, 56, 56) |
|
x_out = layer(x) |
|
assert x_out.shape == torch.Size([1, 64, 28, 28]) |
|
|
|
|
|
def test_resnest_stem(): |
|
|
|
model = ResNet(50) |
|
assert model.stem_channels == 64 |
|
assert model.conv1.out_channels == 64 |
|
assert model.norm1.num_features == 64 |
|
|
|
|
|
model = ResNet(50, base_channels=32) |
|
assert model.stem_channels == 32 |
|
assert model.conv1.out_channels == 32 |
|
assert model.norm1.num_features == 32 |
|
assert model.layer1[0].conv1.in_channels == 32 |
|
|
|
|
|
model = ResNet(50, stem_channels=64) |
|
assert model.stem_channels == 64 |
|
assert model.conv1.out_channels == 64 |
|
assert model.norm1.num_features == 64 |
|
assert model.layer1[0].conv1.in_channels == 64 |
|
|
|
|
|
model = ResNet(50, stem_channels=64, base_channels=32) |
|
assert model.stem_channels == 64 |
|
assert model.conv1.out_channels == 64 |
|
assert model.norm1.num_features == 64 |
|
assert model.layer1[0].conv1.in_channels == 64 |
|
|
|
|
|
model = ResNet(depth=50, stem_channels=128) |
|
model.init_weights() |
|
model.train() |
|
assert model.conv1.out_channels == 128 |
|
assert model.layer1[0].conv1.in_channels == 128 |
|
|
|
|
|
model = ResNetV1d(depth=50, stem_channels=128) |
|
model.init_weights() |
|
model.train() |
|
assert model.stem[0].out_channels == 64 |
|
assert model.stem[1].num_features == 64 |
|
assert model.stem[3].out_channels == 64 |
|
assert model.stem[4].num_features == 64 |
|
assert model.stem[6].out_channels == 128 |
|
assert model.stem[7].num_features == 128 |
|
assert model.layer1[0].conv1.in_channels == 128 |
|
|
|
|
|
def test_resnet_backbone(): |
|
"""Test resnet backbone.""" |
|
with pytest.raises(KeyError): |
|
|
|
ResNet(20) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, num_stages=0) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False) |
|
ResNet(50, dcn=dcn, stage_with_dcn=(True, )) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
stages=(False, True, True), |
|
position='after_conv3') |
|
] |
|
ResNet(50, plugins=plugins) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, num_stages=5) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3) |
|
|
|
with pytest.raises(TypeError): |
|
|
|
model = ResNet(50) |
|
model.init_weights(pretrained=0) |
|
|
|
with pytest.raises(AssertionError): |
|
|
|
ResNet(50, style='tensorflow') |
|
|
|
|
|
model = ResNet(50, norm_eval=True) |
|
model.init_weights() |
|
model.train() |
|
assert check_norm_state(model.modules(), False) |
|
|
|
|
|
model = ResNet(depth=50, norm_eval=True) |
|
model.init_weights('torchvision://resnet50') |
|
model.train() |
|
assert check_norm_state(model.modules(), False) |
|
|
|
|
|
frozen_stages = 1 |
|
model = ResNet(50, frozen_stages=frozen_stages) |
|
model.init_weights() |
|
model.train() |
|
assert model.norm1.training is False |
|
for layer in [model.conv1, model.norm1]: |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(1, frozen_stages + 1): |
|
layer = getattr(model, f'layer{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
model = ResNetV1d(depth=50, frozen_stages=frozen_stages) |
|
assert len(model.stem) == 9 |
|
model.init_weights() |
|
model.train() |
|
assert check_norm_state(model.stem, False) |
|
for param in model.stem.parameters(): |
|
assert param.requires_grad is False |
|
for i in range(1, frozen_stages + 1): |
|
layer = getattr(model, f'layer{i}') |
|
for mod in layer.modules(): |
|
if isinstance(mod, _BatchNorm): |
|
assert mod.training is False |
|
for param in layer.parameters(): |
|
assert param.requires_grad is False |
|
|
|
|
|
model = ResNet(18) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 64, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 128, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 256, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 512, 7, 7]) |
|
|
|
|
|
model = ResNet(18, with_cp=True) |
|
for m in model.modules(): |
|
if is_block(m): |
|
assert m.with_cp |
|
|
|
|
|
model = ResNet(50) |
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, _BatchNorm) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
model = ResNet(50, out_indices=(0, 1, 2)) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 3 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
|
|
|
|
model = ResNet(50, with_cp=True) |
|
for m in model.modules(): |
|
if is_block(m): |
|
assert m.with_cp |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
model = ResNet( |
|
50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)) |
|
for m in model.modules(): |
|
if is_norm(m): |
|
assert isinstance(m, GroupNorm) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict( |
|
type='GeneralizedAttention', |
|
spatial_range=-1, |
|
num_heads=8, |
|
attention_type='0010', |
|
kv_stride=2), |
|
stages=(False, True, True, True), |
|
position='after_conv2'), |
|
dict(cfg=dict(type='NonLocal2d'), position='after_conv2'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16), |
|
stages=(False, True, True, False), |
|
position='after_conv3') |
|
] |
|
model = ResNet(50, plugins=plugins) |
|
for m in model.layer1.modules(): |
|
if is_block(m): |
|
assert not hasattr(m, 'context_block') |
|
assert not hasattr(m, 'gen_attention_block') |
|
assert m.nonlocal_block.in_channels == 64 |
|
for m in model.layer2.modules(): |
|
if is_block(m): |
|
assert m.nonlocal_block.in_channels == 128 |
|
assert m.gen_attention_block.in_channels == 128 |
|
assert m.context_block.in_channels == 512 |
|
|
|
for m in model.layer3.modules(): |
|
if is_block(m): |
|
assert m.nonlocal_block.in_channels == 256 |
|
assert m.gen_attention_block.in_channels == 256 |
|
assert m.context_block.in_channels == 1024 |
|
|
|
for m in model.layer4.modules(): |
|
if is_block(m): |
|
assert m.nonlocal_block.in_channels == 512 |
|
assert m.gen_attention_block.in_channels == 512 |
|
assert not hasattr(m, 'context_block') |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
|
|
plugins = [ |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1), |
|
stages=(False, True, True, False), |
|
position='after_conv3'), |
|
dict( |
|
cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2), |
|
stages=(False, True, True, False), |
|
position='after_conv3') |
|
] |
|
|
|
model = ResNet(50, plugins=plugins) |
|
for m in model.layer1.modules(): |
|
if is_block(m): |
|
assert not hasattr(m, 'context_block') |
|
assert not hasattr(m, 'context_block1') |
|
assert not hasattr(m, 'context_block2') |
|
for m in model.layer2.modules(): |
|
if is_block(m): |
|
assert not hasattr(m, 'context_block') |
|
assert m.context_block1.in_channels == 512 |
|
assert m.context_block2.in_channels == 512 |
|
|
|
for m in model.layer3.modules(): |
|
if is_block(m): |
|
assert not hasattr(m, 'context_block') |
|
assert m.context_block1.in_channels == 1024 |
|
assert m.context_block2.in_channels == 1024 |
|
|
|
for m in model.layer4.modules(): |
|
if is_block(m): |
|
assert not hasattr(m, 'context_block') |
|
assert not hasattr(m, 'context_block1') |
|
assert not hasattr(m, 'context_block2') |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
model = ResNet(50, zero_init_residual=True) |
|
model.init_weights() |
|
for m in model.modules(): |
|
if isinstance(m, Bottleneck): |
|
assert assert_params_all_zeros(m.norm3) |
|
elif isinstance(m, BasicBlock): |
|
assert assert_params_all_zeros(m.norm2) |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
|
|
model = ResNetV1d(depth=50) |
|
model.init_weights() |
|
model.train() |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|
|
imgs = torch.randn(1, 3, 224, 224) |
|
feat = model(imgs) |
|
assert len(feat) == 4 |
|
assert feat[0].shape == torch.Size([1, 256, 56, 56]) |
|
assert feat[1].shape == torch.Size([1, 512, 28, 28]) |
|
assert feat[2].shape == torch.Size([1, 1024, 14, 14]) |
|
assert feat[3].shape == torch.Size([1, 2048, 7, 7]) |
|
|