File size: 23,477 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
import pytest
import torch
from mmcv import assert_params_all_zeros
from mmcv.ops import DeformConv2dPack
from torch.nn.modules import AvgPool2d, GroupNorm
from torch.nn.modules.batchnorm import _BatchNorm

from mmdet.models.backbones import ResNet, ResNetV1d
from mmdet.models.backbones.resnet import BasicBlock, Bottleneck
from mmdet.models.utils import ResLayer, SimplifiedBasicBlock
from .utils import check_norm_state, is_block, is_norm


def test_resnet_basic_block():
    with pytest.raises(AssertionError):
        # Not implemented yet.
        dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
        BasicBlock(64, 64, dcn=dcn)

    with pytest.raises(AssertionError):
        # Not implemented yet.
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3')
        ]
        BasicBlock(64, 64, plugins=plugins)

    with pytest.raises(AssertionError):
        # Not implemented yet
        plugins = [
            dict(
                cfg=dict(
                    type='GeneralizedAttention',
                    spatial_range=-1,
                    num_heads=8,
                    attention_type='0010',
                    kv_stride=2),
                position='after_conv2')
        ]
        BasicBlock(64, 64, plugins=plugins)

    # test BasicBlock structure and forward
    block = BasicBlock(64, 64)
    assert block.conv1.in_channels == 64
    assert block.conv1.out_channels == 64
    assert block.conv1.kernel_size == (3, 3)
    assert block.conv2.in_channels == 64
    assert block.conv2.out_channels == 64
    assert block.conv2.kernel_size == (3, 3)
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test BasicBlock with checkpoint forward
    block = BasicBlock(64, 64, with_cp=True)
    assert block.with_cp
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])


def test_resnet_bottleneck():
    with pytest.raises(AssertionError):
        # Style must be in ['pytorch', 'caffe']
        Bottleneck(64, 64, style='tensorflow')

    with pytest.raises(AssertionError):
        # Allowed positions are 'after_conv1', 'after_conv2', 'after_conv3'
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv4')
        ]
        Bottleneck(64, 16, plugins=plugins)

    with pytest.raises(AssertionError):
        # Need to specify different postfix to avoid duplicate plugin name
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3'),
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3')
        ]
        Bottleneck(64, 16, plugins=plugins)

    with pytest.raises(KeyError):
        # Plugin type is not supported
        plugins = [dict(cfg=dict(type='WrongPlugin'), position='after_conv3')]
        Bottleneck(64, 16, plugins=plugins)

    # Test Bottleneck with checkpoint forward
    block = Bottleneck(64, 16, with_cp=True)
    assert block.with_cp
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test Bottleneck style
    block = Bottleneck(64, 64, stride=2, style='pytorch')
    assert block.conv1.stride == (1, 1)
    assert block.conv2.stride == (2, 2)
    block = Bottleneck(64, 64, stride=2, style='caffe')
    assert block.conv1.stride == (2, 2)
    assert block.conv2.stride == (1, 1)

    # Test Bottleneck DCN
    dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
    with pytest.raises(AssertionError):
        Bottleneck(64, 64, dcn=dcn, conv_cfg=dict(type='Conv'))
    block = Bottleneck(64, 64, dcn=dcn)
    assert isinstance(block.conv2, DeformConv2dPack)

    # Test Bottleneck forward
    block = Bottleneck(64, 16)
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test Bottleneck with 1 ContextBlock after conv3
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            position='after_conv3')
    ]
    block = Bottleneck(64, 16, plugins=plugins)
    assert block.context_block.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test Bottleneck with 1 GeneralizedAttention after conv2
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            position='after_conv2')
    ]
    block = Bottleneck(64, 16, plugins=plugins)
    assert block.gen_attention_block.in_channels == 16
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test Bottleneck with 1 GeneralizedAttention after conv2, 1 NonLocal2D
    # after conv2, 1 ContextBlock after conv3
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            position='after_conv2'),
        dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            position='after_conv3')
    ]
    block = Bottleneck(64, 16, plugins=plugins)
    assert block.gen_attention_block.in_channels == 16
    assert block.nonlocal_block.in_channels == 16
    assert block.context_block.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test Bottleneck with 1 ContextBlock after conv2, 2 ContextBlock after
    # conv3
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
            position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
            position='after_conv3'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=3),
            position='after_conv3')
    ]
    block = Bottleneck(64, 16, plugins=plugins)
    assert block.context_block1.in_channels == 16
    assert block.context_block2.in_channels == 64
    assert block.context_block3.in_channels == 64
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])


def test_simplied_basic_block():
    with pytest.raises(AssertionError):
        # Not implemented yet.
        dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
        SimplifiedBasicBlock(64, 64, dcn=dcn)

    with pytest.raises(AssertionError):
        # Not implemented yet.
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                position='after_conv3')
        ]
        SimplifiedBasicBlock(64, 64, plugins=plugins)

    with pytest.raises(AssertionError):
        # Not implemented yet
        plugins = [
            dict(
                cfg=dict(
                    type='GeneralizedAttention',
                    spatial_range=-1,
                    num_heads=8,
                    attention_type='0010',
                    kv_stride=2),
                position='after_conv2')
        ]
        SimplifiedBasicBlock(64, 64, plugins=plugins)

    with pytest.raises(AssertionError):
        # Not implemented yet
        SimplifiedBasicBlock(64, 64, with_cp=True)

    # test SimplifiedBasicBlock structure and forward
    block = SimplifiedBasicBlock(64, 64)
    assert block.conv1.in_channels == 64
    assert block.conv1.out_channels == 64
    assert block.conv1.kernel_size == (3, 3)
    assert block.conv2.in_channels == 64
    assert block.conv2.out_channels == 64
    assert block.conv2.kernel_size == (3, 3)
    x = torch.randn(1, 64, 56, 56)
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # test SimplifiedBasicBlock without norm
    block = SimplifiedBasicBlock(64, 64, norm_cfg=None)
    assert block.norm1 is None
    assert block.norm2 is None
    x_out = block(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])


def test_resnet_res_layer():
    # Test ResLayer of 3 Bottleneck w\o downsample
    layer = ResLayer(Bottleneck, 64, 16, 3)
    assert len(layer) == 3
    assert layer[0].conv1.in_channels == 64
    assert layer[0].conv1.out_channels == 16
    for i in range(1, len(layer)):
        assert layer[i].conv1.in_channels == 64
        assert layer[i].conv1.out_channels == 16
    for i in range(len(layer)):
        assert layer[i].downsample is None
    x = torch.randn(1, 64, 56, 56)
    x_out = layer(x)
    assert x_out.shape == torch.Size([1, 64, 56, 56])

    # Test ResLayer of 3 Bottleneck with downsample
    layer = ResLayer(Bottleneck, 64, 64, 3)
    assert layer[0].downsample[0].out_channels == 256
    for i in range(1, len(layer)):
        assert layer[i].downsample is None
    x = torch.randn(1, 64, 56, 56)
    x_out = layer(x)
    assert x_out.shape == torch.Size([1, 256, 56, 56])

    # Test ResLayer of 3 Bottleneck with stride=2
    layer = ResLayer(Bottleneck, 64, 64, 3, stride=2)
    assert layer[0].downsample[0].out_channels == 256
    assert layer[0].downsample[0].stride == (2, 2)
    for i in range(1, len(layer)):
        assert layer[i].downsample is None
    x = torch.randn(1, 64, 56, 56)
    x_out = layer(x)
    assert x_out.shape == torch.Size([1, 256, 28, 28])

    # Test ResLayer of 3 Bottleneck with stride=2 and average downsample
    layer = ResLayer(Bottleneck, 64, 64, 3, stride=2, avg_down=True)
    assert isinstance(layer[0].downsample[0], AvgPool2d)
    assert layer[0].downsample[1].out_channels == 256
    assert layer[0].downsample[1].stride == (1, 1)
    for i in range(1, len(layer)):
        assert layer[i].downsample is None
    x = torch.randn(1, 64, 56, 56)
    x_out = layer(x)
    assert x_out.shape == torch.Size([1, 256, 28, 28])

    # Test ResLayer of 3 BasicBlock with stride=2 and downsample_first=False
    layer = ResLayer(BasicBlock, 64, 64, 3, stride=2, downsample_first=False)
    assert layer[2].downsample[0].out_channels == 64
    assert layer[2].downsample[0].stride == (2, 2)
    for i in range(len(layer) - 1):
        assert layer[i].downsample is None
    x = torch.randn(1, 64, 56, 56)
    x_out = layer(x)
    assert x_out.shape == torch.Size([1, 64, 28, 28])


def test_resnest_stem():
    # Test default stem_channels
    model = ResNet(50)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64

    # Test default stem_channels, with base_channels=32
    model = ResNet(50, base_channels=32)
    assert model.stem_channels == 32
    assert model.conv1.out_channels == 32
    assert model.norm1.num_features == 32
    assert model.layer1[0].conv1.in_channels == 32

    # Test stem_channels=64
    model = ResNet(50, stem_channels=64)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64
    assert model.layer1[0].conv1.in_channels == 64

    # Test stem_channels=64, with base_channels=32
    model = ResNet(50, stem_channels=64, base_channels=32)
    assert model.stem_channels == 64
    assert model.conv1.out_channels == 64
    assert model.norm1.num_features == 64
    assert model.layer1[0].conv1.in_channels == 64

    # Test stem_channels=128
    model = ResNet(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.conv1.out_channels == 128
    assert model.layer1[0].conv1.in_channels == 128

    # Test V1d stem_channels
    model = ResNetV1d(depth=50, stem_channels=128)
    model.init_weights()
    model.train()
    assert model.stem[0].out_channels == 64
    assert model.stem[1].num_features == 64
    assert model.stem[3].out_channels == 64
    assert model.stem[4].num_features == 64
    assert model.stem[6].out_channels == 128
    assert model.stem[7].num_features == 128
    assert model.layer1[0].conv1.in_channels == 128


def test_resnet_backbone():
    """Test resnet backbone."""
    with pytest.raises(KeyError):
        # ResNet depth should be in [18, 34, 50, 101, 152]
        ResNet(20)

    with pytest.raises(AssertionError):
        # In ResNet: 1 <= num_stages <= 4
        ResNet(50, num_stages=0)

    with pytest.raises(AssertionError):
        # len(stage_with_dcn) == num_stages
        dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
        ResNet(50, dcn=dcn, stage_with_dcn=(True, ))

    with pytest.raises(AssertionError):
        # len(stage_with_plugin) == num_stages
        plugins = [
            dict(
                cfg=dict(type='ContextBlock', ratio=1. / 16),
                stages=(False, True, True),
                position='after_conv3')
        ]
        ResNet(50, plugins=plugins)

    with pytest.raises(AssertionError):
        # In ResNet: 1 <= num_stages <= 4
        ResNet(50, num_stages=5)

    with pytest.raises(AssertionError):
        # len(strides) == len(dilations) == num_stages
        ResNet(50, strides=(1, ), dilations=(1, 1), num_stages=3)

    with pytest.raises(TypeError):
        # pretrained must be a string path
        model = ResNet(50)
        model.init_weights(pretrained=0)

    with pytest.raises(AssertionError):
        # Style must be in ['pytorch', 'caffe']
        ResNet(50, style='tensorflow')

    # Test ResNet50 norm_eval=True
    model = ResNet(50, norm_eval=True)
    model.init_weights()
    model.train()
    assert check_norm_state(model.modules(), False)

    # Test ResNet50 with torchvision pretrained weight
    model = ResNet(depth=50, norm_eval=True)
    model.init_weights('torchvision://resnet50')
    model.train()
    assert check_norm_state(model.modules(), False)

    # Test ResNet50 with first stage frozen
    frozen_stages = 1
    model = ResNet(50, frozen_stages=frozen_stages)
    model.init_weights()
    model.train()
    assert model.norm1.training is False
    for layer in [model.conv1, model.norm1]:
        for param in layer.parameters():
            assert param.requires_grad is False
    for i in range(1, frozen_stages + 1):
        layer = getattr(model, f'layer{i}')
        for mod in layer.modules():
            if isinstance(mod, _BatchNorm):
                assert mod.training is False
        for param in layer.parameters():
            assert param.requires_grad is False

    # Test ResNet50V1d with first stage frozen
    model = ResNetV1d(depth=50, frozen_stages=frozen_stages)
    assert len(model.stem) == 9
    model.init_weights()
    model.train()
    assert check_norm_state(model.stem, False)
    for param in model.stem.parameters():
        assert param.requires_grad is False
    for i in range(1, frozen_stages + 1):
        layer = getattr(model, f'layer{i}')
        for mod in layer.modules():
            if isinstance(mod, _BatchNorm):
                assert mod.training is False
        for param in layer.parameters():
            assert param.requires_grad is False

    # Test ResNet18 forward
    model = ResNet(18)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 64, 56, 56])
    assert feat[1].shape == torch.Size([1, 128, 28, 28])
    assert feat[2].shape == torch.Size([1, 256, 14, 14])
    assert feat[3].shape == torch.Size([1, 512, 7, 7])

    # Test ResNet18 with checkpoint forward
    model = ResNet(18, with_cp=True)
    for m in model.modules():
        if is_block(m):
            assert m.with_cp

    # Test ResNet50 with BatchNorm forward
    model = ResNet(50)
    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, _BatchNorm)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with layers 1, 2, 3 out forward
    model = ResNet(50, out_indices=(0, 1, 2))
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 3
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])

    # Test ResNet50 with checkpoint forward
    model = ResNet(50, with_cp=True)
    for m in model.modules():
        if is_block(m):
            assert m.with_cp
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with GroupNorm forward
    model = ResNet(
        50, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True))
    for m in model.modules():
        if is_norm(m):
            assert isinstance(m, GroupNorm)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with 1 GeneralizedAttention after conv2, 1 NonLocal2D
    # after conv2, 1 ContextBlock after conv3 in layers 2, 3, 4
    plugins = [
        dict(
            cfg=dict(
                type='GeneralizedAttention',
                spatial_range=-1,
                num_heads=8,
                attention_type='0010',
                kv_stride=2),
            stages=(False, True, True, True),
            position='after_conv2'),
        dict(cfg=dict(type='NonLocal2d'), position='after_conv2'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16),
            stages=(False, True, True, False),
            position='after_conv3')
    ]
    model = ResNet(50, plugins=plugins)
    for m in model.layer1.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'gen_attention_block')
            assert m.nonlocal_block.in_channels == 64
    for m in model.layer2.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 128
            assert m.gen_attention_block.in_channels == 128
            assert m.context_block.in_channels == 512

    for m in model.layer3.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 256
            assert m.gen_attention_block.in_channels == 256
            assert m.context_block.in_channels == 1024

    for m in model.layer4.modules():
        if is_block(m):
            assert m.nonlocal_block.in_channels == 512
            assert m.gen_attention_block.in_channels == 512
            assert not hasattr(m, 'context_block')
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 with 1 ContextBlock after conv2, 1 ContextBlock after
    # conv3 in layers 2, 3, 4
    plugins = [
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=1),
            stages=(False, True, True, False),
            position='after_conv3'),
        dict(
            cfg=dict(type='ContextBlock', ratio=1. / 16, postfix=2),
            stages=(False, True, True, False),
            position='after_conv3')
    ]

    model = ResNet(50, plugins=plugins)
    for m in model.layer1.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'context_block1')
            assert not hasattr(m, 'context_block2')
    for m in model.layer2.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert m.context_block1.in_channels == 512
            assert m.context_block2.in_channels == 512

    for m in model.layer3.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert m.context_block1.in_channels == 1024
            assert m.context_block2.in_channels == 1024

    for m in model.layer4.modules():
        if is_block(m):
            assert not hasattr(m, 'context_block')
            assert not hasattr(m, 'context_block1')
            assert not hasattr(m, 'context_block2')
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNet50 zero initialization of residual
    model = ResNet(50, zero_init_residual=True)
    model.init_weights()
    for m in model.modules():
        if isinstance(m, Bottleneck):
            assert assert_params_all_zeros(m.norm3)
        elif isinstance(m, BasicBlock):
            assert assert_params_all_zeros(m.norm2)
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    # Test ResNetV1d forward
    model = ResNetV1d(depth=50)
    model.init_weights()
    model.train()

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])

    imgs = torch.randn(1, 3, 224, 224)
    feat = model(imgs)
    assert len(feat) == 4
    assert feat[0].shape == torch.Size([1, 256, 56, 56])
    assert feat[1].shape == torch.Size([1, 512, 28, 28])
    assert feat[2].shape == torch.Size([1, 1024, 14, 14])
    assert feat[3].shape == torch.Size([1, 2048, 7, 7])