ZJF-Thunder
添加文件
e26e560

Tutorial 9: ONNX to TensorRT (Experimental)

How to convert models from ONNX to TensorRT

Prerequisite

  1. Please refer to get_started.md for installation of MMCV and MMDetection from source.
  2. Please refer to ONNXRuntime in mmcv and TensorRT plugin in mmcv to install mmcv-full with ONNXRuntime custom ops and TensorRT plugins.
  3. Use our tool pytorch2onnx to convert the model from PyTorch to ONNX.

Usage

python tools/deployment/onnx2tensorrt.py \
    ${MODEL} \
    --trt-file ${TRT_FILE} \
    --input-img ${INPUT_IMAGE_PATH} \
    --shape ${IMAGE_SHAPE} \
    --mean ${IMAGE_MEAN} \
    --std ${IMAGE_STD} \
    --dataset ${DATASET_NAME} \
    --workspace-size {WORKSPACE_SIZE} \
    --show \
    --verify \

Description of all arguments:

  • model : The path of an ONNX model file.
  • --trt-file: The Path of output TensorRT engine file. If not specified, it will be set to tmp.trt.
  • --input-img : The path of an input image for tracing and conversion. By default, it will be set to demo/demo.jpg.
  • --shape: The height and width of model input. If not specified, it will be set to 400 600.
  • --mean : Three mean values for the input image. If not specified, it will be set to 123.675 116.28 103.53.
  • --std : Three std values for the input image. If not specified, it will be set to 58.395 57.12 57.375.
  • --dataset : The dataset name for the input model. If not specified, it will be set to coco.
  • --workspace-size : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it will be set to 1 GiB.
  • --show: Determines whether to show the outputs of the model. If not specified, it will be set to False.
  • --verify: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If not specified, it will be set to False.
  • --to-rgb: Determines whether to convert the input image to RGB mode. If not specified, it will be set to True.

Example:

python tools/deployment/onnx2tensorrt.py \
    checkpoints/retinanet_r50_fpn_1x_coco.onnx \
    --trt-file checkpoints/retinanet_r50_fpn_1x_coco.trt \
    --input-img demo/demo.jpg \
    --shape 400 600 \
    --mean 123.675 116.28 103.53 \
    --std 58.395 57.12 57.375 \
    --show \
    --verify \

List of supported models convertable to TensorRT

The table below lists the models that are guaranteed to be convertable to TensorRT.

Model Config Status
SSD configs/ssd/ssd300_coco.py Y
FSAF configs/fsaf/fsaf_r50_fpn_1x_coco.py Y
FCOS configs/fcos/fcos_r50_caffe_fpn_4x4_1x_coco.py Y
YOLOv3 configs/yolo/yolov3_d53_mstrain-608_273e_coco.py Y
RetinaNet configs/retinanet/retinanet_r50_fpn_1x_coco.py Y
Faster-RCNN configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py Y

Notes:

  • All models above are tested with Pytorch==1.6.0 and TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-10.2.cudnn8.0

Reminders

  • If you meet any problem with the listed models above, please create an issue and it would be taken care of soon. For models not included in the list, we may not provide much help here due to the limited resources. Please try to dig a little deeper and debug by yourself.
  • Because this feature is experimental and may change fast, please always try with the latest mmcv and mmdetecion.

FAQs

  • None