|
# Tutorial 4: Customize Models |
|
|
|
We basically categorize model components into 5 types. |
|
|
|
- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet. |
|
- neck: the component between backbones and heads, e.g., FPN, PAFPN. |
|
- head: the component for specific tasks, e.g., bbox prediction and mask prediction. |
|
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align. |
|
- loss: the component in head for calculating losses, e.g., FocalLoss, L1Loss, and GHMLoss. |
|
|
|
## Develop new components |
|
|
|
### Add a new backbone |
|
|
|
Here we show how to develop new components with an example of MobileNet. |
|
|
|
#### 1. Define a new backbone (e.g. MobileNet) |
|
|
|
Create a new file `mmdet/models/backbones/mobilenet.py`. |
|
|
|
```python |
|
import torch.nn as nn |
|
|
|
from ..builder import BACKBONES |
|
|
|
|
|
@BACKBONES.register_module() |
|
class MobileNet(nn.Module): |
|
|
|
def __init__(self, arg1, arg2): |
|
pass |
|
|
|
def forward(self, x): # should return a tuple |
|
pass |
|
|
|
def init_weights(self, pretrained=None): |
|
pass |
|
``` |
|
|
|
#### 2. Import the module |
|
|
|
You can either add the following line to `mmdet/models/backbones/__init__.py` |
|
|
|
```python |
|
from .mobilenet import MobileNet |
|
``` |
|
|
|
or alternatively add |
|
|
|
```python |
|
custom_imports = dict( |
|
imports=['mmdet.models.backbones.mobilenet'], |
|
allow_failed_imports=False) |
|
``` |
|
|
|
to the config file to avoid modifying the original code. |
|
|
|
#### 3. Use the backbone in your config file |
|
|
|
```python |
|
model = dict( |
|
... |
|
backbone=dict( |
|
type='MobileNet', |
|
arg1=xxx, |
|
arg2=xxx), |
|
... |
|
``` |
|
|
|
### Add new necks |
|
|
|
#### 1. Define a neck (e.g. PAFPN) |
|
|
|
Create a new file `mmdet/models/necks/pafpn.py`. |
|
|
|
```python |
|
from ..builder import NECKS |
|
|
|
@NECKS.register_module() |
|
class PAFPN(nn.Module): |
|
|
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
num_outs, |
|
start_level=0, |
|
end_level=-1, |
|
add_extra_convs=False): |
|
pass |
|
|
|
def forward(self, inputs): |
|
# implementation is ignored |
|
pass |
|
``` |
|
|
|
#### 2. Import the module |
|
|
|
You can either add the following line to `mmdet/models/necks/__init__.py`, |
|
|
|
```python |
|
from .pafpn import PAFPN |
|
``` |
|
|
|
or alternatively add |
|
|
|
```python |
|
custom_imports = dict( |
|
imports=['mmdet.models.necks.pafpn.py'], |
|
allow_failed_imports=False) |
|
``` |
|
|
|
to the config file and avoid modifying the original code. |
|
|
|
#### 3. Modify the config file |
|
|
|
```python |
|
neck=dict( |
|
type='PAFPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=5) |
|
``` |
|
|
|
### Add new heads |
|
|
|
Here we show how to develop a new head with the example of [Double Head R-CNN](https://arxiv.org/abs/1904.06493) as the following. |
|
|
|
First, add a new bbox head in `mmdet/models/roi_heads/bbox_heads/double_bbox_head.py`. |
|
Double Head R-CNN implements a new bbox head for object detection. |
|
To implement a bbox head, basically we need to implement three functions of the new module as the following. |
|
|
|
```python |
|
from mmdet.models.builder import HEADS |
|
from .bbox_head import BBoxHead |
|
|
|
@HEADS.register_module() |
|
class DoubleConvFCBBoxHead(BBoxHead): |
|
r"""Bbox head used in Double-Head R-CNN |
|
|
|
/-> cls |
|
/-> shared convs -> |
|
\-> reg |
|
roi features |
|
/-> cls |
|
\-> shared fc -> |
|
\-> reg |
|
""" # noqa: W605 |
|
|
|
def __init__(self, |
|
num_convs=0, |
|
num_fcs=0, |
|
conv_out_channels=1024, |
|
fc_out_channels=1024, |
|
conv_cfg=None, |
|
norm_cfg=dict(type='BN'), |
|
**kwargs): |
|
kwargs.setdefault('with_avg_pool', True) |
|
super(DoubleConvFCBBoxHead, self).__init__(**kwargs) |
|
|
|
def init_weights(self): |
|
# conv layers are already initialized by ConvModule |
|
|
|
def forward(self, x_cls, x_reg): |
|
|
|
``` |
|
|
|
Second, implement a new RoI Head if it is necessary. We plan to inherit the new `DoubleHeadRoIHead` from `StandardRoIHead`. We can find that a `StandardRoIHead` already implements the following functions. |
|
|
|
```python |
|
import torch |
|
|
|
from mmdet.core import bbox2result, bbox2roi, build_assigner, build_sampler |
|
from ..builder import HEADS, build_head, build_roi_extractor |
|
from .base_roi_head import BaseRoIHead |
|
from .test_mixins import BBoxTestMixin, MaskTestMixin |
|
|
|
|
|
@HEADS.register_module() |
|
class StandardRoIHead(BaseRoIHead, BBoxTestMixin, MaskTestMixin): |
|
"""Simplest base roi head including one bbox head and one mask head. |
|
""" |
|
|
|
def init_assigner_sampler(self): |
|
|
|
def init_bbox_head(self, bbox_roi_extractor, bbox_head): |
|
|
|
def init_mask_head(self, mask_roi_extractor, mask_head): |
|
|
|
def init_weights(self, pretrained): |
|
|
|
def forward_dummy(self, x, proposals): |
|
|
|
|
|
def forward_train(self, |
|
x, |
|
img_metas, |
|
proposal_list, |
|
gt_bboxes, |
|
gt_labels, |
|
gt_bboxes_ignore=None, |
|
gt_masks=None): |
|
|
|
def _bbox_forward(self, x, rois): |
|
|
|
def _bbox_forward_train(self, x, sampling_results, gt_bboxes, gt_labels, |
|
img_metas): |
|
|
|
def _mask_forward_train(self, x, sampling_results, bbox_feats, gt_masks, |
|
img_metas): |
|
|
|
def _mask_forward(self, x, rois=None, pos_inds=None, bbox_feats=None): |
|
|
|
|
|
def simple_test(self, |
|
x, |
|
proposal_list, |
|
img_metas, |
|
proposals=None, |
|
rescale=False): |
|
"""Test without augmentation.""" |
|
|
|
``` |
|
|
|
Double Head's modification is mainly in the bbox_forward logic, and it inherits other logics from the `StandardRoIHead`. |
|
In the `mmdet/models/roi_heads/double_roi_head.py`, we implement the new RoI Head as the following: |
|
|
|
```python |
|
from ..builder import HEADS |
|
from .standard_roi_head import StandardRoIHead |
|
|
|
|
|
@HEADS.register_module() |
|
class DoubleHeadRoIHead(StandardRoIHead): |
|
"""RoI head for Double Head RCNN |
|
|
|
https://arxiv.org/abs/1904.06493 |
|
""" |
|
|
|
def __init__(self, reg_roi_scale_factor, **kwargs): |
|
super(DoubleHeadRoIHead, self).__init__(**kwargs) |
|
self.reg_roi_scale_factor = reg_roi_scale_factor |
|
|
|
def _bbox_forward(self, x, rois): |
|
bbox_cls_feats = self.bbox_roi_extractor( |
|
x[:self.bbox_roi_extractor.num_inputs], rois) |
|
bbox_reg_feats = self.bbox_roi_extractor( |
|
x[:self.bbox_roi_extractor.num_inputs], |
|
rois, |
|
roi_scale_factor=self.reg_roi_scale_factor) |
|
if self.with_shared_head: |
|
bbox_cls_feats = self.shared_head(bbox_cls_feats) |
|
bbox_reg_feats = self.shared_head(bbox_reg_feats) |
|
cls_score, bbox_pred = self.bbox_head(bbox_cls_feats, bbox_reg_feats) |
|
|
|
bbox_results = dict( |
|
cls_score=cls_score, |
|
bbox_pred=bbox_pred, |
|
bbox_feats=bbox_cls_feats) |
|
return bbox_results |
|
``` |
|
|
|
Last, the users need to add the module in |
|
`mmdet/models/bbox_heads/__init__.py` and `mmdet/models/roi_heads/__init__.py` thus the corresponding registry could find and load them. |
|
|
|
Alternatively, the users can add |
|
|
|
```python |
|
custom_imports=dict( |
|
imports=['mmdet.models.roi_heads.double_roi_head', 'mmdet.models.bbox_heads.double_bbox_head']) |
|
``` |
|
|
|
to the config file and achieve the same goal. |
|
|
|
The config file of Double Head R-CNN is as the following |
|
|
|
```python |
|
_base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' |
|
model = dict( |
|
roi_head=dict( |
|
type='DoubleHeadRoIHead', |
|
reg_roi_scale_factor=1.3, |
|
bbox_head=dict( |
|
_delete_=True, |
|
type='DoubleConvFCBBoxHead', |
|
num_convs=4, |
|
num_fcs=2, |
|
in_channels=256, |
|
conv_out_channels=1024, |
|
fc_out_channels=1024, |
|
roi_feat_size=7, |
|
num_classes=80, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0., 0., 0., 0.], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=2.0), |
|
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=2.0)))) |
|
|
|
``` |
|
|
|
Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification. |
|
The Double Head R-CNN mainly uses a new DoubleHeadRoIHead and a new |
|
`DoubleConvFCBBoxHead`, the arguments are set according to the `__init__` function of each module. |
|
|
|
### Add new loss |
|
|
|
Assume you want to add a new loss as `MyLoss`, for bounding box regression. |
|
To add a new loss function, the users need implement it in `mmdet/models/losses/my_loss.py`. |
|
The decorator `weighted_loss` enable the loss to be weighted for each element. |
|
|
|
```python |
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..builder import LOSSES |
|
from .utils import weighted_loss |
|
|
|
@weighted_loss |
|
def my_loss(pred, target): |
|
assert pred.size() == target.size() and target.numel() > 0 |
|
loss = torch.abs(pred - target) |
|
return loss |
|
|
|
@LOSSES.register_module() |
|
class MyLoss(nn.Module): |
|
|
|
def __init__(self, reduction='mean', loss_weight=1.0): |
|
super(MyLoss, self).__init__() |
|
self.reduction = reduction |
|
self.loss_weight = loss_weight |
|
|
|
def forward(self, |
|
pred, |
|
target, |
|
weight=None, |
|
avg_factor=None, |
|
reduction_override=None): |
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
reduction = ( |
|
reduction_override if reduction_override else self.reduction) |
|
loss_bbox = self.loss_weight * my_loss( |
|
pred, target, weight, reduction=reduction, avg_factor=avg_factor) |
|
return loss_bbox |
|
``` |
|
|
|
Then the users need to add it in the `mmdet/models/losses/__init__.py`. |
|
|
|
```python |
|
from .my_loss import MyLoss, my_loss |
|
|
|
``` |
|
|
|
Alternatively, you can add |
|
|
|
```python |
|
custom_imports=dict( |
|
imports=['mmdet.models.losses.my_loss']) |
|
``` |
|
|
|
to the config file and achieve the same goal. |
|
|
|
To use it, modify the `loss_xxx` field. |
|
Since MyLoss is for regression, you need to modify the `loss_bbox` field in the head. |
|
|
|
```python |
|
loss_bbox=dict(type='MyLoss', loss_weight=1.0)) |
|
``` |
|
|