|
# LVIS dataset |
|
|
|
## Introduction |
|
|
|
[DATASET] |
|
|
|
```latex |
|
@inproceedings{gupta2019lvis, |
|
title={{LVIS}: A Dataset for Large Vocabulary Instance Segmentation}, |
|
author={Gupta, Agrim and Dollar, Piotr and Girshick, Ross}, |
|
booktitle={Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
## Common Setting |
|
|
|
* Please follow [install guide](../../docs/install.md#install-mmdetection) to install open-mmlab forked cocoapi first. |
|
* Run following scripts to install our forked lvis-api. |
|
|
|
```shell |
|
# mmlvis is fully compatible with official lvis |
|
pip install mmlvis |
|
``` |
|
|
|
or |
|
|
|
```shell |
|
pip install -r requirements/optional.txt |
|
``` |
|
|
|
* All experiments use oversample strategy [here](../../docs/tutorials/new_dataset.md#class-balanced-dataset) with oversample threshold `1e-3`. |
|
* The size of LVIS v0.5 is half of COCO, so schedule `2x` in LVIS is roughly the same iterations as `1x` in COCO. |
|
|
|
## Results and models of LVIS v0.5 |
|
|
|
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download | |
|
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: |:--------: | |
|
| R-50-FPN | pytorch | 2x | - | - | 26.1 | 25.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis-dbd06831.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_20200531_160435.log.json) | |
|
| R-101-FPN | pytorch | 2x | - | - | 27.1 | 27.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis-54582ee2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_20200601_134748.log.json) | |
|
| X-101-32x4d-FPN | pytorch | 2x | - | - | 26.7 | 26.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis-3cf55ea2.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_20200531_221749.log.json) | |
|
| X-101-64x4d-FPN | pytorch | 2x | - | - | 26.4 | 26.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis-1c99a5ad.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_20200601_194651.log.json) | |
|
|
|
## Results and models of LVIS v1 |
|
|
|
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download | |
|
| :-------------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: | |
|
| R-50-FPN | pytorch | 1x | 9.1 | - | 22.5 | 21.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-aa78ac3d.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_061305.log.json) | |
|
| R-101-FPN | pytorch | 1x | 10.8 | - | 24.6 | 23.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-ec55ce32.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_070959.log.json) | |
|
| X-101-32x4d-FPN | pytorch | 1x | 11.8 | - | 26.7 | 25.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-ebbc5c81.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-20200829_071317.log.json) | |
|
| X-101-64x4d-FPN | pytorch | 1x | 14.6 | - | 27.2 | 25.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-43d9edfe.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1-20200830_060206.log.json) | |
|
|