|
# Libra R-CNN: Towards Balanced Learning for Object Detection |
|
|
|
## Introduction |
|
|
|
[ALGORITHM] |
|
|
|
We provide config files to reproduce the results in the CVPR 2019 paper [Libra R-CNN](https://arxiv.org/pdf/1904.02701.pdf). |
|
|
|
``` |
|
@inproceedings{pang2019libra, |
|
title={Libra R-CNN: Towards Balanced Learning for Object Detection}, |
|
author={Pang, Jiangmiao and Chen, Kai and Shi, Jianping and Feng, Huajun and Ouyang, Wanli and Dahua Lin}, |
|
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, |
|
year={2019} |
|
} |
|
``` |
|
|
|
## Results and models |
|
|
|
The results on COCO 2017val are shown in the below table. (results on test-dev are usually slightly higher than val) |
|
|
|
| Architecture | Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | |
|
|:------------:|:---------------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:| |
|
| Faster R-CNN | R-50-FPN | pytorch | 1x | 4.6 | 19.0 | 38.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130_204655.log.json) | |
|
| Fast R-CNN | R-50-FPN | pytorch | 1x | | | | | |
|
| Faster R-CNN | R-101-FPN | pytorch | 1x | 6.5 | 14.4 | 40.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203_001405.log.json) | |
|
| Faster R-CNN | X-101-64x4d-FPN | pytorch | 1x | 10.8 | 8.5 | 42.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315_231625.log.json) | |
|
| RetinaNet | R-50-FPN | pytorch | 1x | 4.2 | 17.7 | 37.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205_112757.log.json) | |
|
|