|
_base_ = [ |
|
'../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py', |
|
'../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
input_size = 300 |
|
model = dict( |
|
bbox_head=dict( |
|
type='SSDHead', |
|
anchor_generator=dict( |
|
type='LegacySSDAnchorGenerator', |
|
scale_major=False, |
|
input_size=input_size, |
|
basesize_ratio_range=(0.15, 0.9), |
|
strides=[8, 16, 32, 64, 100, 300], |
|
ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]), |
|
bbox_coder=dict( |
|
type='LegacyDeltaXYWHBBoxCoder', |
|
target_means=[.0, .0, .0, .0], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]))) |
|
|
|
dataset_type = 'CocoDataset' |
|
data_root = 'data/coco/' |
|
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict(type='LoadAnnotations', with_bbox=True), |
|
dict( |
|
type='PhotoMetricDistortion', |
|
brightness_delta=32, |
|
contrast_range=(0.5, 1.5), |
|
saturation_range=(0.5, 1.5), |
|
hue_delta=18), |
|
dict( |
|
type='Expand', |
|
mean=img_norm_cfg['mean'], |
|
to_rgb=img_norm_cfg['to_rgb'], |
|
ratio_range=(1, 4)), |
|
dict( |
|
type='MinIoURandomCrop', |
|
min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), |
|
min_crop_size=0.3), |
|
dict(type='Resize', img_scale=(300, 300), keep_ratio=False), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='DefaultFormatBundle'), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(300, 300), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=False), |
|
dict(type='Normalize', **img_norm_cfg), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']), |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=8, |
|
workers_per_gpu=3, |
|
train=dict( |
|
_delete_=True, |
|
type='RepeatDataset', |
|
times=5, |
|
dataset=dict( |
|
type=dataset_type, |
|
ann_file=data_root + 'annotations/instances_train2017.json', |
|
img_prefix=data_root + 'train2017/', |
|
pipeline=train_pipeline)), |
|
val=dict(pipeline=test_pipeline), |
|
test=dict(pipeline=test_pipeline)) |
|
|
|
optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4) |
|
optimizer_config = dict(_delete_=True) |
|
dist_params = dict(backend='nccl', port=29555) |
|
|