File size: 2,659 Bytes
e26e560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
_base_ = [
    '../_base_/models/ssd300.py', '../_base_/datasets/coco_detection.py',
    '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
]
# model settings
input_size = 300
model = dict(
    bbox_head=dict(
        type='SSDHead',
        anchor_generator=dict(
            type='LegacySSDAnchorGenerator',
            scale_major=False,
            input_size=input_size,
            basesize_ratio_range=(0.15, 0.9),
            strides=[8, 16, 32, 64, 100, 300],
            ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
        bbox_coder=dict(
            type='LegacyDeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2])))
# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(mean=[123.675, 116.28, 103.53], std=[1, 1, 1], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile', to_float32=True),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PhotoMetricDistortion',
        brightness_delta=32,
        contrast_range=(0.5, 1.5),
        saturation_range=(0.5, 1.5),
        hue_delta=18),
    dict(
        type='Expand',
        mean=img_norm_cfg['mean'],
        to_rgb=img_norm_cfg['to_rgb'],
        ratio_range=(1, 4)),
    dict(
        type='MinIoURandomCrop',
        min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
        min_crop_size=0.3),
    dict(type='Resize', img_scale=(300, 300), keep_ratio=False),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(300, 300),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=False),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=3,
    train=dict(
        _delete_=True,
        type='RepeatDataset',
        times=5,
        dataset=dict(
            type=dataset_type,
            ann_file=data_root + 'annotations/instances_train2017.json',
            img_prefix=data_root + 'train2017/',
            pipeline=train_pipeline)),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))
# optimizer
optimizer = dict(type='SGD', lr=2e-3, momentum=0.9, weight_decay=5e-4)
optimizer_config = dict(_delete_=True)
dist_params = dict(backend='nccl', port=29555)