ZJF-Thunder
添加文件
e26e560

FCOS: Fully Convolutional One-Stage Object Detection

Introduction

[ALGORITHM]

@article{tian2019fcos,
  title={FCOS: Fully Convolutional One-Stage Object Detection},
  author={Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  journal={arXiv preprint arXiv:1904.01355},
  year={2019}
}

Results and Models

Backbone Style GN MS train Tricks DCN Lr schd Mem (GB) Inf time (fps) box AP Config Download
R-50 caffe Y N N N 1x 3.6 22.7 36.6 config model | log
R-50 caffe Y N Y N 1x 3.7 - 38.7 config model | log
R-50 caffe Y N Y Y 1x 3.8 - 42.3 config model | log
R-101 caffe Y N N N 1x 5.5 17.3 39.1 config model | log
Backbone Style GN MS train Lr schd Mem (GB) Inf time (fps) box AP Config Download
R-50 caffe Y Y 2x 2.6 22.9 38.5 config model | log
R-101 caffe Y Y 2x 5.5 17.3 40.8 config model | log
X-101 pytorch Y Y 2x 10.0 9.7 42.6 config model | log

Notes:

  • The X-101 backbone is X-101-64x4d.
  • Tricks means setting norm_on_bbox, centerness_on_reg, center_sampling as True.
  • DCN means using DCNv2 in both backbone and head.