|
# Dynamic R-CNN: Towards High Quality Object Detection via Dynamic Training |
|
|
|
## Introduction |
|
|
|
[ALGORITHM] |
|
|
|
``` |
|
@article{DynamicRCNN, |
|
author = {Hongkai Zhang and Hong Chang and Bingpeng Ma and Naiyan Wang and Xilin Chen}, |
|
title = {Dynamic {R-CNN}: Towards High Quality Object Detection via Dynamic Training}, |
|
journal = {arXiv preprint arXiv:2004.06002}, |
|
year = {2020} |
|
} |
|
``` |
|
|
|
## Results and Models |
|
|
|
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download | |
|
|:---------:|:-------:|:-------:|:--------:|:--------------:|:------:|:------:|:--------:| |
|
| R-50 | pytorch | 1x | 3.8 | | 38.9 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x.py) | [model](http://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x-62a3f276.pth) | [log](http://download.openmmlab.com/mmdetection/v2.0/dynamic_rcnn/dynamic_rcnn_r50_fpn_1x/dynamic_rcnn_r50_fpn_1x_20200618_095048.log.json) | |
|
|