Deformable Convolutional Networks
Introduction
[ALGORITHM]
@inproceedings{dai2017deformable,
title={Deformable Convolutional Networks},
author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
booktitle={Proceedings of the IEEE international conference on computer vision},
year={2017}
}
[ALGORITHM]
@article{zhu2018deformable,
title={Deformable ConvNets v2: More Deformable, Better Results},
author={Zhu, Xizhou and Hu, Han and Lin, Stephen and Dai, Jifeng},
journal={arXiv preprint arXiv:1811.11168},
year={2018}
}
Results and Models
Backbone | Model | Style | Conv | Pool | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
---|---|---|---|---|---|---|---|---|---|---|---|
R-50-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 4.0 | 17.8 | 41.3 | config | model | log | |
R-50-FPN | Faster | pytorch | mdconv(c3-c5) | - | 1x | 4.1 | 17.6 | 41.4 | config | model | log | |
*R-50-FPN (dg=4) | Faster | pytorch | mdconv(c3-c5) | - | 1x | 4.2 | 17.4 | 41.5 | config | model | log | |
R-50-FPN | Faster | pytorch | - | dpool | 1x | 5.0 | 17.2 | 38.9 | config | model | log | |
R-50-FPN | Faster | pytorch | - | mdpool | 1x | 5.8 | 16.6 | 38.7 | config | model | log | |
R-101-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 6.0 | 12.5 | 42.7 | config | model | log | |
X-101-32x4d-FPN | Faster | pytorch | dconv(c3-c5) | - | 1x | 7.3 | 10.0 | 44.5 | config | model | log | |
R-50-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 15.4 | 41.8 | 37.4 | config | model | log |
R-50-FPN | Mask | pytorch | mdconv(c3-c5) | - | 1x | 4.5 | 15.1 | 41.5 | 37.1 | config | model | log |
R-101-FPN | Mask | pytorch | dconv(c3-c5) | - | 1x | 6.5 | 11.7 | 43.5 | 38.9 | config | model | log |
R-50-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 4.5 | 14.6 | 43.8 | config | model | log | |
R-101-FPN | Cascade | pytorch | dconv(c3-c5) | - | 1x | 6.4 | 11.0 | 45.0 | config | model | log | |
R-50-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 6.0 | 10.0 | 44.4 | 38.6 | config | model | log |
R-101-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 8.0 | 8.6 | 45.8 | 39.7 | config | model | log |
X-101-32x4d-FPN | Cascade Mask | pytorch | dconv(c3-c5) | - | 1x | 9.2 | 47.3 | 41.1 | config | model | log |
Notes:
dconv
andmdconv
denote (modulated) deformable convolution,c3-c5
means adding dconv in resnet stage 3 to 5.dpool
andmdpool
denote (modulated) deformable roi pooling.- The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
- (*) For R-50-FPN (dg=4), dg is short for deformable_group. This model is trained and tested on Amazon EC2 p3dn.24xlarge instance.
- Memory, Train/Inf time is outdated.