Swin-Transformer-Object-Detection / .dev_scripts /gather_benchmark_metric.py
ZJF-Thunder
添加文件
e26e560
import argparse
import glob
import os.path as osp
import mmcv
from gather_models import get_final_results
try:
import xlrd
except ImportError:
xlrd = None
try:
import xlutils
from xlutils.copy import copy
except ImportError:
xlutils = None
def parse_args():
parser = argparse.ArgumentParser(
description='Gather benchmarked models metric')
parser.add_argument(
'root',
type=str,
help='root path of benchmarked models to be gathered')
parser.add_argument(
'benchmark_json', type=str, help='json path of benchmark models')
parser.add_argument(
'--out', type=str, help='output path of gathered metrics to be stored')
parser.add_argument(
'--not-show', action='store_true', help='not show metrics')
parser.add_argument(
'--excel', type=str, help='input path of excel to be recorded')
parser.add_argument(
'--ncol', type=int, help='Number of column to be modified or appended')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
if args.excel:
assert args.ncol, 'Please specify "--excel" and "--ncol" ' \
'at the same time'
if xlrd is None:
raise RuntimeError(
'xlrd is not installed,'
'Please use “pip install xlrd==1.2.0” to install')
if xlutils is None:
raise RuntimeError(
'xlutils is not installed,'
'Please use “pip install xlutils==2.0.0” to install')
readbook = xlrd.open_workbook(args.excel)
sheet = readbook.sheet_by_name('Sheet1')
sheet_info = {}
total_nrows = sheet.nrows
for i in range(3, sheet.nrows):
sheet_info[sheet.row_values(i)[0]] = i
xlrw = copy(readbook)
table = xlrw.get_sheet(0)
root_path = args.root
metrics_out = args.out
benchmark_json_path = args.benchmark_json
model_configs = mmcv.load(benchmark_json_path)['models']
result_dict = {}
for config in model_configs:
config_name = osp.split(config)[-1]
config_name = osp.splitext(config_name)[0]
result_path = osp.join(root_path, config_name)
if osp.exists(result_path):
# 1 read config
cfg = mmcv.Config.fromfile(config)
total_epochs = cfg.runner.max_epochs
final_results = cfg.evaluation.metric
if not isinstance(final_results, list):
final_results = [final_results]
final_results_out = []
for key in final_results:
if 'proposal_fast' in key:
final_results_out.append('AR@1000') # RPN
elif 'mAP' not in key:
final_results_out.append(key + '_mAP')
# 2 determine whether total_epochs ckpt exists
ckpt_path = f'epoch_{total_epochs}.pth'
if osp.exists(osp.join(result_path, ckpt_path)):
log_json_path = list(
sorted(glob.glob(osp.join(result_path, '*.log.json'))))[-1]
# 3 read metric
model_performance = get_final_results(log_json_path,
total_epochs,
final_results_out)
if model_performance is None:
print(f'log file error: {log_json_path}')
continue
for performance in model_performance:
if performance in ['AR@1000', 'bbox_mAP', 'segm_mAP']:
metric = round(model_performance[performance] * 100, 1)
model_performance[performance] = metric
result_dict[config] = model_performance
# update and append excel content
if args.excel:
if 'AR@1000' in model_performance:
metrics = f'{model_performance["AR@1000"]}(AR@1000)'
elif 'segm_mAP' in model_performance:
metrics = f'{model_performance["bbox_mAP"]}/' \
f'{model_performance["segm_mAP"]}'
else:
metrics = f'{model_performance["bbox_mAP"]}'
row_num = sheet_info.get(config, None)
if row_num:
table.write(row_num, args.ncol, metrics)
else:
table.write(total_nrows, 0, config)
table.write(total_nrows, args.ncol, metrics)
total_nrows += 1
else:
print(f'{config} not exist: {ckpt_path}')
else:
print(f'not exist: {config}')
# 4 save or print results
if metrics_out:
mmcv.mkdir_or_exist(metrics_out)
mmcv.dump(result_dict, osp.join(metrics_out, 'model_metric_info.json'))
if not args.not_show:
print('===================================')
for config_name, metrics in result_dict.items():
print(config_name, metrics)
print('===================================')
if args.excel:
filename, sufflx = osp.splitext(args.excel)
xlrw.save(f'{filename}_o{sufflx}')
print(f'>>> Output {filename}_o{sufflx}')