import argparse import glob import os.path as osp import mmcv from gather_models import get_final_results try: import xlrd except ImportError: xlrd = None try: import xlutils from xlutils.copy import copy except ImportError: xlutils = None def parse_args(): parser = argparse.ArgumentParser( description='Gather benchmarked models metric') parser.add_argument( 'root', type=str, help='root path of benchmarked models to be gathered') parser.add_argument( 'benchmark_json', type=str, help='json path of benchmark models') parser.add_argument( '--out', type=str, help='output path of gathered metrics to be stored') parser.add_argument( '--not-show', action='store_true', help='not show metrics') parser.add_argument( '--excel', type=str, help='input path of excel to be recorded') parser.add_argument( '--ncol', type=int, help='Number of column to be modified or appended') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() if args.excel: assert args.ncol, 'Please specify "--excel" and "--ncol" ' \ 'at the same time' if xlrd is None: raise RuntimeError( 'xlrd is not installed,' 'Please use “pip install xlrd==1.2.0” to install') if xlutils is None: raise RuntimeError( 'xlutils is not installed,' 'Please use “pip install xlutils==2.0.0” to install') readbook = xlrd.open_workbook(args.excel) sheet = readbook.sheet_by_name('Sheet1') sheet_info = {} total_nrows = sheet.nrows for i in range(3, sheet.nrows): sheet_info[sheet.row_values(i)[0]] = i xlrw = copy(readbook) table = xlrw.get_sheet(0) root_path = args.root metrics_out = args.out benchmark_json_path = args.benchmark_json model_configs = mmcv.load(benchmark_json_path)['models'] result_dict = {} for config in model_configs: config_name = osp.split(config)[-1] config_name = osp.splitext(config_name)[0] result_path = osp.join(root_path, config_name) if osp.exists(result_path): # 1 read config cfg = mmcv.Config.fromfile(config) total_epochs = cfg.runner.max_epochs final_results = cfg.evaluation.metric if not isinstance(final_results, list): final_results = [final_results] final_results_out = [] for key in final_results: if 'proposal_fast' in key: final_results_out.append('AR@1000') # RPN elif 'mAP' not in key: final_results_out.append(key + '_mAP') # 2 determine whether total_epochs ckpt exists ckpt_path = f'epoch_{total_epochs}.pth' if osp.exists(osp.join(result_path, ckpt_path)): log_json_path = list( sorted(glob.glob(osp.join(result_path, '*.log.json'))))[-1] # 3 read metric model_performance = get_final_results(log_json_path, total_epochs, final_results_out) if model_performance is None: print(f'log file error: {log_json_path}') continue for performance in model_performance: if performance in ['AR@1000', 'bbox_mAP', 'segm_mAP']: metric = round(model_performance[performance] * 100, 1) model_performance[performance] = metric result_dict[config] = model_performance # update and append excel content if args.excel: if 'AR@1000' in model_performance: metrics = f'{model_performance["AR@1000"]}(AR@1000)' elif 'segm_mAP' in model_performance: metrics = f'{model_performance["bbox_mAP"]}/' \ f'{model_performance["segm_mAP"]}' else: metrics = f'{model_performance["bbox_mAP"]}' row_num = sheet_info.get(config, None) if row_num: table.write(row_num, args.ncol, metrics) else: table.write(total_nrows, 0, config) table.write(total_nrows, args.ncol, metrics) total_nrows += 1 else: print(f'{config} not exist: {ckpt_path}') else: print(f'not exist: {config}') # 4 save or print results if metrics_out: mmcv.mkdir_or_exist(metrics_out) mmcv.dump(result_dict, osp.join(metrics_out, 'model_metric_info.json')) if not args.not_show: print('===================================') for config_name, metrics in result_dict.items(): print(config_name, metrics) print('===================================') if args.excel: filename, sufflx = osp.splitext(args.excel) xlrw.save(f'{filename}_o{sufflx}') print(f'>>> Output {filename}_o{sufflx}')