metadata
library_name: transformers
tags:
- remote sensing
- object detection
datasets: keremberke/satellite-building-segmentation
metrics:
- Average Precision (AP)
- Average Recall (AR)
license: mit
base_model: PekingU/rtdetr_r101vd_coco_o365
pipeline_tag: object-detection
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
results:
- task:
type: object-detection
dataset:
type: image-segmentation
name: keremberke/satellite-building-segmentation
metrics:
- name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
type: AP (IoU=0.50:0.95)
value: 0.43
- name: AP @ IoU=0.50 | area=all | maxDets=100
type: AP (IoU=0.50)
value: 0.636
- name: AP @ IoU=0.75 | area=all | maxDets=100
type: AP (IoU=0.75)
value: 0.462
- name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
type: AP (IoU=0.50:0.95) small objects
value: 0.241
- name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
type: AP (IoU=0.50:0.95) medium objects
value: 0.513
- name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
type: AP (IoU=0.50:0.95) large objects
value: 0.624
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
type: AR (IoU=0.50:0.95) maxDets=1
value: 0.055
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
type: AR (IoU=0.50:0.95) maxDets=10
value: 0.327
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
type: AR (IoU=0.50:0.95) maxDets=100
value: 0.507
- name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
type: AR (IoU=0.50:0.95) small objects
value: 0.312
- name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
type: AR (IoU=0.50:0.95) medium objects
value: 0.595
- name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
type: AR (IoU=0.50:0.95) large objects
value: 0.712
Model Card
Roof Detection for Remote Sensing task.
Model Details
Model Description
- Developed by: Yifeng Liu
- Model type: Object Detection for Remote Sensing task.
- License: MIT
Model Sources
- Repository: Jupyter Notebook
- Demo [optional]: [Pending]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoModelForObjectDetection, AutoImageProcessor
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")