File size: 3,280 Bytes
8ec0291
 
23a1e74
 
d3a5b47
65f6bd8
e9d1818
 
 
23a1e74
 
 
783db85
e46b579
 
 
 
890bf6e
f4ec436
890bf6e
 
e9d1818
890bf6e
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
e9d1818
783db85
 
8ec0291
 
0144301
8ec0291
096e78f
8ec0291
 
 
 
 
 
 
 
 
 
bdeb8c9
 
 
8ec0291
096e78f
8ec0291
 
 
096e78f
 
8ec0291
 
 
 
096e78f
8ec0291
 
 
 
 
 
 
 
0144301
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
tags:
- remote sensing
- object detection
datasets: keremberke/satellite-building-segmentation
metrics:
- Average Precision (AP)
- Average Recall (AR)
license: mit
base_model: PekingU/rtdetr_r101vd_coco_o365
pipeline_tag: object-detection
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
  results:
    - task:
        type: object-detection
      dataset:
        type: image-segmentation
        name: keremberke/satellite-building-segmentation
      metrics:
      - name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
        type: AP (IoU=0.50:0.95)
        value: 0.430
      - name: AP @ IoU=0.50 | area=all | maxDets=100
        type: AP (IoU=0.50)
        value: 0.636
      - name: AP @ IoU=0.75 | area=all | maxDets=100
        type: AP (IoU=0.75)
        value: 0.462
      - name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
        type: AP (IoU=0.50:0.95) small objects
        value: 0.241
      - name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
        type: AP (IoU=0.50:0.95) medium objects
        value: 0.513
      - name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
        type: AP (IoU=0.50:0.95) large objects
        value: 0.624
      - name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
        type: AR (IoU=0.50:0.95) maxDets=1
        value: 0.055
      - name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
        type: AR (IoU=0.50:0.95) maxDets=10
        value: 0.327
      - name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
        type: AR (IoU=0.50:0.95) maxDets=100
        value: 0.507
      - name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
        type: AR (IoU=0.50:0.95) small objects
        value: 0.312
      - name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
        type: AR (IoU=0.50:0.95) medium objects
        value: 0.595
      - name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
        type: AR (IoU=0.50:0.95) large objects
        value: 0.712
---

# Model Card

Roof Detection for Remote Sensing task.
<!-- Provide a quick summary of what the model is/does. -->



## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

- **Developed by:** Yifeng Liu
- **Model type:** Object Detection for Remote Sensing task.
- **License:** MIT

### Model Sources 

<!-- Provide the basic links for the model. -->

- **Repository:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb)
- **Demo [optional]:** [Pending]




## Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.
```python
from transformers import AutoModelForObjectDetection, AutoImageProcessor

model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
```