File size: 3,280 Bytes
8ec0291 23a1e74 d3a5b47 65f6bd8 e9d1818 23a1e74 783db85 e46b579 890bf6e f4ec436 890bf6e e9d1818 890bf6e e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 e9d1818 783db85 8ec0291 0144301 8ec0291 096e78f 8ec0291 bdeb8c9 8ec0291 096e78f 8ec0291 096e78f 8ec0291 096e78f 8ec0291 0144301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
library_name: transformers
tags:
- remote sensing
- object detection
datasets: keremberke/satellite-building-segmentation
metrics:
- Average Precision (AP)
- Average Recall (AR)
license: mit
base_model: PekingU/rtdetr_r101vd_coco_o365
pipeline_tag: object-detection
model-index:
- name: rt-detr-finetuned-for-satellite-image-roofs-detection
results:
- task:
type: object-detection
dataset:
type: image-segmentation
name: keremberke/satellite-building-segmentation
metrics:
- name: AP @ IoU=0.50:0.95 | area=all | maxDets=100
type: AP (IoU=0.50:0.95)
value: 0.430
- name: AP @ IoU=0.50 | area=all | maxDets=100
type: AP (IoU=0.50)
value: 0.636
- name: AP @ IoU=0.75 | area=all | maxDets=100
type: AP (IoU=0.75)
value: 0.462
- name: AP @ IoU=0.50:0.95 | area=small | maxDets=100
type: AP (IoU=0.50:0.95) small objects
value: 0.241
- name: AP @ IoU=0.50:0.95 | area=medium | maxDets=100
type: AP (IoU=0.50:0.95) medium objects
value: 0.513
- name: AP @ IoU=0.50:0.95 | area=large | maxDets=100
type: AP (IoU=0.50:0.95) large objects
value: 0.624
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=1
type: AR (IoU=0.50:0.95) maxDets=1
value: 0.055
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=10
type: AR (IoU=0.50:0.95) maxDets=10
value: 0.327
- name: AR @ IoU=0.50:0.95 | area=all | maxDets=100
type: AR (IoU=0.50:0.95) maxDets=100
value: 0.507
- name: AR @ IoU=0.50:0.95 | area=small | maxDets=100
type: AR (IoU=0.50:0.95) small objects
value: 0.312
- name: AR @ IoU=0.50:0.95 | area=medium | maxDets=100
type: AR (IoU=0.50:0.95) medium objects
value: 0.595
- name: AR @ IoU=0.50:0.95 | area=large | maxDets=100
type: AR (IoU=0.50:0.95) large objects
value: 0.712
---
# Model Card
Roof Detection for Remote Sensing task.
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Yifeng Liu
- **Model type:** Object Detection for Remote Sensing task.
- **License:** MIT
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** [Jupyter Notebook](https://github.com/ownEyes/satellite-image-roofs-auto-annotation-sourcecode/blob/dev/notebooks/finetune_rtdetr.ipynb)
- **Demo [optional]:** [Pending]
## Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForObjectDetection, AutoImageProcessor
model = AutoModelForObjectDetection.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
image_processor = AutoImageProcessor.from_pretrained("Yifeng-Liu/rt-detr-finetuned-for-satellite-image-roofs-detection")
``` |