|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: albert-base-v2-finetuned-filtered-0609 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# albert-base-v2-finetuned-filtered-0609 |
|
|
|
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2062 |
|
- Accuracy: 0.9723 |
|
- Precision: 0.9724 |
|
- Recall: 0.9723 |
|
- F1: 0.9723 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.2688 | 1.0 | 3180 | 0.2282 | 0.9560 | 0.9577 | 0.9560 | 0.9562 | |
|
| 0.2268 | 2.0 | 6360 | 0.1909 | 0.9638 | 0.9640 | 0.9638 | 0.9638 | |
|
| 0.1831 | 3.0 | 9540 | 0.2590 | 0.9572 | 0.9584 | 0.9572 | 0.9572 | |
|
| 0.1588 | 4.0 | 12720 | 0.1752 | 0.9673 | 0.9678 | 0.9673 | 0.9673 | |
|
| 0.0972 | 5.0 | 15900 | 0.1868 | 0.9695 | 0.9696 | 0.9695 | 0.9695 | |
|
| 0.0854 | 6.0 | 19080 | 0.2042 | 0.9701 | 0.9707 | 0.9701 | 0.9702 | |
|
| 0.0599 | 7.0 | 22260 | 0.1793 | 0.9748 | 0.9749 | 0.9748 | 0.9749 | |
|
| 0.0389 | 8.0 | 25440 | 0.1996 | 0.9742 | 0.9743 | 0.9742 | 0.9742 | |
|
| 0.0202 | 9.0 | 28620 | 0.2188 | 0.9723 | 0.9726 | 0.9723 | 0.9724 | |
|
| 0.0152 | 10.0 | 31800 | 0.2062 | 0.9723 | 0.9724 | 0.9723 | 0.9723 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.9.1+cu111 |
|
- Datasets 1.16.1 |
|
- Tokenizers 0.12.1 |
|
|