YeRyeongLee's picture
update model card README.md
90cc520
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: albert-base-v2-finetuned-filtered-0609
    results: []

albert-base-v2-finetuned-filtered-0609

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2062
  • Accuracy: 0.9723
  • Precision: 0.9724
  • Recall: 0.9723
  • F1: 0.9723

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.2688 1.0 3180 0.2282 0.9560 0.9577 0.9560 0.9562
0.2268 2.0 6360 0.1909 0.9638 0.9640 0.9638 0.9638
0.1831 3.0 9540 0.2590 0.9572 0.9584 0.9572 0.9572
0.1588 4.0 12720 0.1752 0.9673 0.9678 0.9673 0.9673
0.0972 5.0 15900 0.1868 0.9695 0.9696 0.9695 0.9695
0.0854 6.0 19080 0.2042 0.9701 0.9707 0.9701 0.9702
0.0599 7.0 22260 0.1793 0.9748 0.9749 0.9748 0.9749
0.0389 8.0 25440 0.1996 0.9742 0.9743 0.9742 0.9742
0.0202 9.0 28620 0.2188 0.9723 0.9726 0.9723 0.9724
0.0152 10.0 31800 0.2062 0.9723 0.9724 0.9723 0.9723

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.9.1+cu111
  • Datasets 1.16.1
  • Tokenizers 0.12.1