|
--- |
|
base_model: OFA-Sys/chinese-clip-vit-base-patch16 |
|
library_name: transformers.js |
|
--- |
|
|
|
https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16 with ONNX weights to be compatible with Transformers.js. |
|
|
|
## Usage (Transformers.js) |
|
|
|
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: |
|
```bash |
|
npm i @xenova/transformers |
|
``` |
|
|
|
**Example:** Zero-shot image classification w/ `Xenova/chinese-clip-vit-base-patch16`. |
|
|
|
```javascript |
|
import { pipeline } from '@xenova/transformers'; |
|
|
|
// Create zero-shot image classification pipeline |
|
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/chinese-clip-vit-base-patch16'); |
|
|
|
// Set image url and candidate labels |
|
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/pikachu.png'; |
|
const candidate_labels = ['杰尼龟', '妙蛙种子', '小火龙', '皮卡丘'] // Squirtle, Bulbasaur, Charmander, Pikachu in Chinese |
|
|
|
// Classify image |
|
const output = await classifier(url, candidate_labels); |
|
console.log(output); |
|
// [ |
|
// { score: 0.9926728010177612, label: '皮卡丘' }, // Pikachu |
|
// { score: 0.003480620216578245, label: '妙蛙种子' }, // Bulbasaur |
|
// { score: 0.001942147733643651, label: '杰尼龟' }, // Squirtle |
|
// { score: 0.0019044597866013646, label: '小火龙' } // Charmander |
|
// ] |
|
``` |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/bVOErVl5Zsz1dpstDfKpu.png) |
|
|
|
--- |
|
|
|
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |