--- base_model: OFA-Sys/chinese-clip-vit-base-patch16 library_name: transformers.js --- https://huggingface.co/OFA-Sys/chinese-clip-vit-base-patch16 with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using: ```bash npm i @xenova/transformers ``` **Example:** Zero-shot image classification w/ `Xenova/chinese-clip-vit-base-patch16`. ```javascript import { pipeline } from '@xenova/transformers'; // Create zero-shot image classification pipeline const classifier = await pipeline('zero-shot-image-classification', 'Xenova/chinese-clip-vit-base-patch16'); // Set image url and candidate labels const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/pikachu.png'; const candidate_labels = ['杰尼龟', '妙蛙种子', '小火龙', '皮卡丘'] // Squirtle, Bulbasaur, Charmander, Pikachu in Chinese // Classify image const output = await classifier(url, candidate_labels); console.log(output); // [ // { score: 0.9926728010177612, label: '皮卡丘' }, // Pikachu // { score: 0.003480620216578245, label: '妙蛙种子' }, // Bulbasaur // { score: 0.001942147733643651, label: '杰尼龟' }, // Squirtle // { score: 0.0019044597866013646, label: '小火龙' } // Charmander // ] ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/bVOErVl5Zsz1dpstDfKpu.png) --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).