ksingla025's picture
Update README.md
d74053c verified
|
raw
history blame
1.57 kB

language:

  • en library_name: nemo datasets:
  • librispeech_asr
  • fisher_corpus
  • Switchboard-1
  • WSJ-0
  • WSJ-1
  • National-Singapore-Corpus-Part-1
  • National-Singapore-Corpus-Part-6
  • vctk
  • VoxPopuli-(EN)
  • Europarl-ASR-(EN)
  • Multilingual-LibriSpeech-(2000-hours)
  • mozilla-foundation/common_voice_7_0 thumbnail: null tags:
  • automatic-speech-recognition
  • speech
  • audio
  • CTC
  • Conformer
  • Transformer
  • pytorch
  • NeMo
  • hf-asr-leaderboard
  • Riva license: cc-by-4.0

This speech tagger performs transcription for Hindi, annotates key entities, predict speaker age, dialiect and intent.

Model is suitable for voiceAI applications, real-time and offline.

Model Details

  • Model type: NeMo ASR
  • Architecture: Conformer CTC
  • Language: English
  • Training data: CommonVoice, Gigaspeech
  • Performance metrics: [Metrics]

Usage

To use this model, you need to install the NeMo library:

pip install nemo_toolkit

How to run

import nemo.collections.asr as nemo_asr

# Step 1: Load the ASR model from Hugging Face
model_name = 'WhissleAI/stt_hi_conformer_ctc_entities_age_dialiect_intent'
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)

# Step 2: Provide the path to your audio file
audio_file_path = '/path/to/your/audio_file.wav'

# Step 3: Transcribe the audio
transcription = asr_model.transcribe(paths2audio_files=[audio_file_path])
print(f'Transcription: {transcription[0]}')

Dataset is from AI4Bharat IndicVoices Hindi V1 and V2 dataset.

https://indicvoices.ai4bharat.org/