File size: 1,568 Bytes
d74053c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3d0ed
 
 
 
 
d74053c
 
8b3d0ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National-Singapore-Corpus-Part-1
- National-Singapore-Corpus-Part-6
- vctk
- VoxPopuli-(EN)
- Europarl-ASR-(EN)
- Multilingual-LibriSpeech-(2000-hours)
- mozilla-foundation/common_voice_7_0
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
- Riva
license: cc-by-4.0

# This speech tagger performs transcription for Hindi, annotates key entities, predict speaker age, dialiect and intent.

Model is suitable for voiceAI applications, real-time and offline.



## Model Details

- **Model type**: NeMo ASR
- **Architecture**: Conformer CTC
- **Language**: English
- **Training data**: CommonVoice, Gigaspeech
- **Performance metrics**: [Metrics]

## Usage

To use this model, you need to install the NeMo library:

```bash
pip install nemo_toolkit
```

### How to run

```python
import nemo.collections.asr as nemo_asr

# Step 1: Load the ASR model from Hugging Face
model_name = 'WhissleAI/stt_hi_conformer_ctc_entities_age_dialiect_intent'
asr_model = nemo_asr.models.EncDecCTCModel.from_pretrained(model_name)

# Step 2: Provide the path to your audio file
audio_file_path = '/path/to/your/audio_file.wav'

# Step 3: Transcribe the audio
transcription = asr_model.transcribe(paths2audio_files=[audio_file_path])
print(f'Transcription: {transcription[0]}')
```

Dataset is from AI4Bharat IndicVoices Hindi V1 and V2 dataset.

https://indicvoices.ai4bharat.org/