vit5-large / README.md
razent's picture
Update README.md
d20d355
|
raw
history blame
1.08 kB
metadata
language: vi
datasets:
  - cc100
tags:
  - summarization
  - translation
  - question-answering
license: mit

ViT5-large

State-of-the-art pre-trained Transformer-based encoder-decoder model for Vietnamese.

How to use

For more details, do check out our Github repo.

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large")  
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large")
​
sentence = "Xin chào"
text =  "summarize: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    early_stopping=True
)
for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    print(line)

Citation

Coming Soon...