metadata
language: vi
datasets:
- cc100
tags:
- summarization
- translation
- question-answering
license: mit
ViT5-large
State-of-the-art pre-trained Transformer-based encoder-decoder model for Vietnamese.
How to use
For more details, do check out our Github repo.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large")
sentence = "Xin chào"
text = "summarize: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
Citation
Coming Soon...